Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms

被引:20
作者
Boiti, Chiara [1 ]
Jornet, David [2 ]
Oliaro, Alessandro [3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
[2] Univ Politecn Valencia, IUMPA, Camino Vera S-N, E-46071 Valencia, Spain
[3] Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Regularity; Linear partial differential operators with polynomial coefficients; Schwartz spaces; Wigner transform;
D O I
10.1016/j.jmaa.2016.09.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the behaviour of linear partial differential operators with polynomial coefficients via a Wigner type transform. In particular, we obtain some results of regularity in the Schwartz space S and in the space S-omega as introduced by Bjorck for weight functions omega. Several examples are discussed in this new setting. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:920 / 944
页数:25
相关论文
共 23 条
[1]   Quasianalytic Wave Front Sets for Solutions of Linear Partial Differential Operators [J].
Albanese, A. A. ;
Jornet, D. ;
Oliaro, A. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (02) :153-181
[2]   LINEAR PARTIAL DIFFERENTIAL OPERATORS AND GENERALIZED DISTRIBUTIONS [J].
BJORCK, G .
ARKIV FOR MATEMATIK, 1966, 6 (4-5) :351-&
[3]   Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients [J].
Boiti, C. ;
Jornet, D. ;
Juan-Huguet, J. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[4]  
Boiti C., ARXIV151107307
[5]  
Boiti C., 2016, J PSEUDO DIFFER OPER
[6]   A characterization of the wave front set defined by the iterates of an operator with constant coefficients [J].
Boiti, Chiara ;
Jornet, David .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) :891-919
[7]  
Borwein J.M., 2006, CMS BOOKS MATH, V3
[8]  
Braun R.W., 1990, RESULTS MATH, V17, P206, DOI DOI 10.1007/BF03322459
[9]  
Buzano E., ARXIV12063455
[10]   Characterizations of the Gelfand-Shilov spaces via Fourier transforms [J].
Chung, J ;
Chung, SY ;
Kim, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :2101-2108