Vision 20/20: Perspectives on automated image segmentation for radiotherapy

被引:277
作者
Sharp, Gregory [1 ]
Fritscher, Karl D. [1 ]
Pekar, Vladimir [2 ]
Peroni, Marta [3 ]
Shusharina, Nadya [1 ]
Veeraraghavan, Harini [4 ]
Yang, Jinzhong [5 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02114 USA
[2] Philips Healthcare, Markham, ON 6LC 2S3, Canada
[3] Paul Scherrer Inst, Ctr Proton Therapy, CH-5232 Villigen, Switzerland
[4] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
[5] MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
segmentation; radiation therapy; image processing; ATLAS-BASED SEGMENTATION; CLINICAL TARGET VOLUME; LYMPH-NODE REGIONS; INTENSITY-MODULATED RADIOTHERAPY; ACTIVE SHAPE MODELS; HEAD-AND-NECK; AUTO-SEGMENTATION; TEXTURE FEATURES; CT IMAGES; INTEROBSERVER VARIATION;
D O I
10.1118/1.4871620
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Due to rapid advances in radiation therapy (RT), especially image guidance and treatment adaptation, a fast and accurate segmentation of medical images is a very important part of the treatment. Manual delineation of target volumes and organs at risk is still the standard routine for most clinics, even though it is time consuming and prone to intra- and interobserver variations. Automated segmentation methods seek to reduce delineation workload and unify the organ boundary definition. In this paper, the authors review the current autosegmentation methods particularly relevant for applications in RT. The authors outline the methods' strengths and limitations and propose strategies that could lead to wider acceptance of autosegmentation in routine clinical practice. The authors conclude that currently, autosegmentation technology in RT planning is an efficient tool for the clinicians to provide them with a good starting point for review and adjustment. Modern hardware platforms including GPUs allow most of the autosegmentation tasks to be done in a range of a few minutes. In the nearest future, improvements in CT-based autosegmentation tools will be achieved through standardization of imaging and contouring protocols. In the longer term, the authors expect a wider use of multi-modality approaches and better understanding of correlation of imaging with biology and pathology. (C) 2014 American Association of Physicists in Medicine.
引用
收藏
页数:13
相关论文
共 105 条
[31]   Model guided diffeomorphic demons for atlas based segmentation [J].
Fritscher, K. D. ;
Schuler, B. ;
Roth, T. ;
Kammerlander, Ch ;
Blauth, M. ;
Schubert, R. .
MEDICAL IMAGING 2010: IMAGE PROCESSING, 2010, 7623
[32]   3D image segmentation using combined shape-intensity prior models [J].
Fritscher, Karl D. ;
Gruenerbl, Agnes ;
Schubert, Rainer .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2007, 1 (06) :341-350
[33]   Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial [J].
Geraghty, John P. ;
Grogan, Garry ;
Ebert, Martin A. .
RADIATION ONCOLOGY, 2013, 8
[34]   Manifold modeling for brain population analysis [J].
Gerber, Samuel ;
Tasdizen, Tolga ;
Fletcher, P. Thomas ;
Joshi, Sarang ;
Whitaker, Ross .
MEDICAL IMAGE ANALYSIS, 2010, 14 (05) :643-653
[35]   Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images [J].
Geremia, Ezequiel ;
Clatz, Olivier ;
Menze, Bjoern H. ;
Konukoglu, Ender ;
Criminisi, Antonio ;
Ayache, Nicholas .
NEUROIMAGE, 2011, 57 (02) :378-390
[36]   Multicenter Clinical Assessment of DIR Atlas-Based Autocontouring [J].
Gooding, M. J. ;
Chu, K. ;
Conibear, J. ;
Dilling, T. ;
Durrant, L. ;
Fuss, M. ;
Gujral, D. ;
Ove, R. ;
Stevens, C. ;
Kadir, T. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2013, 87 (02) :S714-S715
[37]   Segmentation of Head and Neck Lymph Node Regions for Radiotherapy Planning Using Active Contour-Based Atlas Registration [J].
Gorthi, Subrahmanyam ;
Duay, Valerie ;
Houhou, Nawal ;
Cuadra, Meritxell Bach ;
Schick, Ulrike ;
Becker, Minerva ;
Allal, Abdelkarim S. ;
Thiran, Jean-Philippe .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2009, 3 (01) :135-147
[38]   Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a linac:: First clinical experience [J].
Grosu, AL ;
Lachner, R ;
Wiedenmann, N ;
Stärk, S ;
Thamm, R ;
Kneschaurek, P ;
Schwaiger, M ;
Molls, M ;
Weber, WA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 56 (05) :1450-1463
[39]   Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies [J].
Haas, B. ;
Coradi, T. ;
Scholz, M. ;
Kunz, P. ;
Huber, M. ;
Oppitz, U. ;
Andre, L. ;
Lengkeek, V. ;
Huyskens, D. ;
van Esch, A. ;
Reddick, R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (06) :1751-1771
[40]  
Han X, 2010, MED IMAGE ANAL CLIN, P297