Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences:: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids

被引:214
作者
Jansen, Robert K.
Kaittanis, Charalambos
Saski, Christopher
Lee, Seung-Bum
Tomkins, Jeffrey
Alverson, Andrew J.
Daniell, Henry
机构
[1] Univ Cent Florida, Dept Mol Biol & Microbiol, Orlando, FL 32816 USA
[2] Univ Texas, Sect Integrat Biol, Austin, TX 78712 USA
[3] Univ Texas, Inst Mol & Cellular Biol, Patterson Labs 141, Austin, TX 78712 USA
[4] Clemson Univ, Genom Inst, Clemson, SC 29634 USA
关键词
D O I
10.1186/1471-2148-6-32
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The Vitaceae ( grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids. Results: The Vitis vinifera chloroplast genome is 160,928 bp in length, including a pair of inverted repeats of 26,358 bp that are separated by small and large single copy regions of 19,065 bp and 89,147 bp, respectively. The gene content and order of Vitis is identical to many other unrearranged angiosperm chloroplast genomes, including tobacco. Phylogenetic analyses using maximum parsimony and maximum likelihood were performed on DNA sequences of 61 protein-coding genes for two datasets with 28 or 29 taxa, including eight or nine taxa from four of the seven currently recognized major clades of rosids. Parsimony and likelihood phylogenies of both data sets provide strong support for the placement of Vitaceae as sister to the remaining rosids. However, the position of the Myrtales and support for the monophyly of the eurosid I clade differs between the two data sets and the two methods of analysis. In parsimony analyses, the inclusion of Gossypium is necessary to obtain trees that support the monophyly of the eurosid I clade. However, maximum likelihood analyses place Cucumis as sister to the Myrtales and therefore do not support the monophyly of the eurosid I clade. Conclusion: Phylogenies based on DNA sequences from complete chloroplast genome sequences provide strong support for the position of the Vitaceae as the earliest diverging lineage of rosids. Our phylogenetic analyses support recent assertions that inadequate taxon sampling and incorrect model specification for concatenated multi-gene data sets can mislead phylogenetic inferences when using whole chloroplast genomes for phylogeny reconstruction.
引用
收藏
页数:14
相关论文
共 92 条
[1]   Covarion structure in plastid genome evolution:: A new statistical test [J].
Ané, C ;
Burleigh, JG ;
McMahon, MM ;
Sanderson, MJ .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (04) :914-924
[2]   Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome:: A comparative analysis of four monocot chloroplast genomes [J].
Asano, T ;
Tsudzuki, T ;
Takahashi, S ;
Shimada, H ;
Kadowaki, K .
DNA RESEARCH, 2004, 11 (02) :93-99
[3]   Topological bias and inconsistency of maximum likelihood using wrong models [J].
Bruno, WJ ;
Halpern, AL .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (04) :564-566
[4]   The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae):: Comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications [J].
Chang, CC ;
Lin, HC ;
Lin, IP ;
Chow, TY ;
Chen, HH ;
Chen, WH ;
Cheng, CH ;
Lin, CY ;
Liu, SM ;
Chang, CC ;
Chaw, SM .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (02) :279-291
[5]   PHYLOGENETICS OF SEED PLANTS - AN ANALYSIS OF NUCLEOTIDE-SEQUENCES FROM THE PLASTID GENE RBCL [J].
CHASE, MW ;
SOLTIS, DE ;
OLMSTEAD, RG ;
MORGAN, D ;
LES, DH ;
MISHLER, BD ;
DUVALL, MR ;
PRICE, RA ;
HILLS, HG ;
QIU, YL ;
KRON, KA ;
RETTIG, JH ;
CONTI, E ;
PALMER, JD ;
MANHART, JR ;
SYTSMA, KJ ;
MICHAELS, HJ ;
KRESS, WJ ;
KAROL, KG ;
CLARK, WD ;
HEDREN, M ;
GAUT, BS ;
JANSEN, RK ;
KIM, KJ ;
WIMPEE, CF ;
SMITH, JF ;
FURNIER, GR ;
STRAUSS, SH ;
XIANG, QY ;
PLUNKETT, GM ;
SOLTIS, PS ;
SWENSEN, SM ;
WILLIAMS, SE ;
GADEK, PA ;
QUINN, CJ ;
EGUIARTE, LE ;
GOLENBERG, E ;
LEARN, GH ;
GRAHAM, SW ;
BARRETT, SCH ;
DAYANANDAN, S ;
ALBERT, VA .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1993, 80 (03) :528-580
[6]   The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): Multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families [J].
Cosner, ME ;
Jansen, RK ;
Palmer, JD ;
Downie, SR .
CURRENT GENETICS, 1997, 31 (05) :419-429
[7]  
Cronquist A., 1981, INTEGRATED SYSTEM CL
[8]   ChloroplastDB: the chloroplast genome database [J].
Cui, Liying ;
Veeraraghavan, Narayanan ;
Richter, Alexander ;
Wall, Kerr ;
Jansen, Robert K. ;
Leebens-Mack, Jim ;
Makalowska, Izabela ;
dePamphilis, Claude W. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D692-D696
[9]   Breakthrough in chloroplast genetic engineering of agronomically important crops [J].
Daniell, H ;
Kumar, S ;
Dufourmantel, N .
TRENDS IN BIOTECHNOLOGY, 2005, 23 (05) :238-245
[10]   Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts [J].
Daniell, H ;
Lee, SB ;
Panchal, T ;
Wiebe, PO .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (05) :1001-1009