A solid-state electrochemiluminescence composite modified electrode based on Ru(bpy)32+/PAHNSA: Characterization and pharmaceutical applications

被引:9
作者
Al-Hinaai, Mohammed [1 ]
Khudaish, Emad A. [1 ]
Al-Harthy, Salim [2 ]
Suliman, FakhrEldin O. [1 ]
机构
[1] Sultan Qaboos Univ, Coll Sci, Dept Chem, Muscat, Oman
[2] Sultan Qaboos Univ, Coll Sci, Dept Phys, Muscat, Oman
关键词
Electrochemiluninescence; Tris(bipyridyl)ruthenium(II); Chlorpheniramine maleate; Poly(4-amino-3-hydroxynaphthalene sulfonic acid); Sensors; GLASSY-CARBON ELECTRODE; ELECTROGENERATED CHEMILUMINESCENCE; CAPILLARY-ELECTROPHORESIS; ELECTROCHEMICAL DETECTION; CHLORPHENIRAMINE; ACID; FILM; PHENYLEPHRINE; MALEATE; SYSTEM;
D O I
10.1016/j.electacta.2015.06.148
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A composite electrochemiluminescence (ECL) sensor was constructed by electrochemical polymerization of 4-amino-3-hydroxynaphthalene sulfonic acid (AHNSA) and tris(2,2'-bipyridyl) ruthenium(II), [Ru (bpy)(3)](2+), from their aqueous solutions at glassy carbon electrode (GCE). The proposed one-step electrochemical synthesis of the composite film (Ru/PAHNSA/GCE) provides a stable and reactive luminescent for the quantification of chlorpheniramine maleate (CPM) in its pharmaceutical preparations. The properties and the structure of the modified surface were studied using typical voltammetric, Electrochemical Impedance Spectroscopy (EIS), X-Ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM) methods. The intensity of the ECL as a function of [CPM] is linear for the range between 0.2 and 32 mu g mL(-1) with a detection limit of 0.023 mu g mL(-1). The performance of the sensor was tested in the presence of interference species and for real sample analysis under optimal conditions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 43 条
[1]   Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee [J].
Amare, Meareg ;
Admassie, Shimelis .
TALANTA, 2012, 93 :122-128
[2]  
Amare M, 2011, ANAL BIOANAL ELECTRO, V3, P365
[3]   Disposable biosensor based on cathodic electrochemiluminescence of tris(2,2-bipyridine)ruthenium(II) for uric acid determination [J].
Ballesta-Claver, J. ;
Rodriguez-Gomez, R. ;
Capitan-Vallvey, L. F. .
ANALYTICA CHIMICA ACTA, 2013, 770 :153-160
[4]   Adsorption dynamics and electrochemical and photophysical properties of thiolated ruthenium 2,2′-bipyridine monolayers [J].
Bertoncello, Paolo ;
Kefalas, Evangelos T. ;
Pikramenou, Zoe ;
Unwin, Patrick R. ;
Forster, Robert J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (20) :10063-10069
[5]  
Cao WD, 2002, ELECTROPHORESIS, V23, P3692, DOI 10.1002/1522-2683(200211)23:21<3692::AID-ELPS3692>3.0.CO
[6]  
2-J
[7]   Simultaneous determination of chlorpheniramine and pseudoephedrine in human plasma by liquid chromatography-tandem mass spectrometry [J].
Chen, XY ;
Zhang, Y ;
Zhong, DF .
BIOMEDICAL CHROMATOGRAPHY, 2004, 18 (04) :248-253
[8]   Sol-gel-immobilized Tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography [J].
Choi, HN ;
Cho, SH ;
Park, YJ ;
Lee, DW ;
Lee, WY .
ANALYTICA CHIMICA ACTA, 2005, 541 (1-2) :49-56
[9]   Electrochemical oxidative polymerization of sodium 4-amino-3-hydroxynaphthalene-1-sulfonate and structural characterization of polymeric products [J].
Ciric-Marjanovic, G. ;
Trchova, M. ;
Matejka, P. ;
Holler, P. ;
Marjanovic, B. ;
Juranic, I. .
REACTIVE & FUNCTIONAL POLYMERS, 2006, 66 (12) :1670-1683
[10]  
Danielson ND, 2004, MG ELEC CH, P397