Statistical and neural approaches for estimating parameters of a speckle model based on the Nakagami distribution

被引:0
|
作者
Wachowiak, MP [1 ]
Smolíková, R
Milanova, MG
Elmaghraby, AS
机构
[1] Univ Louisville, Dept Comp Sci & Comp Engn, Louisville, KY 40292 USA
[2] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, Ostrava, Czech Republic
[3] Bulgarian Acad Sci, ICSR, BG-1040 Sofia, Bulgaria
来源
MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION | 2001年 / 2123卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Nakagami distribution is a model for the backscattered ultrasound echo from tissues. The Nakagami shape parameter m has been shown to be useful in tissue characterization. Many approaches to estimating this parameter have been reported. In this paper, a maximum likelihood estimator (MLE) is derived, and a solution method is proposed. It is also shown that a neural network can be trained to recognize parameters directly from data. Accuracy and consistency of these new estimators are compared to those of the inverse normalized variance, Tolparev-Polyakov, and Lorenz estimators.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 50 条
  • [1] SOME STATISTICAL PARAMETERS RELATED TO NAKAGAMI-RICE PROBABILITY DISTRIBUTION
    BURNS, WR
    JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION D-RADIO SCIENCE, 1964, D 68 (04): : 429 - +
  • [2] Adaptive speckle suppression and edge enhancement method based on Nakagami distribution
    Guo, Sheng-Wen
    Luo, Li-Min
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2004, 32 (01): : 166 - 169
  • [3] Estimating parameters of proportional hazards model based on expert knowledge and statistical data
    Zuashkiani, A.
    Banjevic, D.
    Jardine, A. K. S.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2009, 60 (12) : 1621 - 1636
  • [4] Estimating parameters for a statistical model describing weak scattering
    Jahangir, M
    Oliver, CJ
    RADAR 97, 1997, (449): : 129 - 134
  • [5] Comparing Approaches to Estimating Person Parameters for the MUPP Model
    Lahuis, David M.
    Blackmore, Caitlin E.
    Ammons, Gage M.
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2025,
  • [6] Experimental evaluation of neural, statistical and model-based approaches to FLIR ATR
    Li, BX
    Zheng, QF
    Der, S
    Chellappa, R
    Nasrabadi, NM
    Chan, LA
    Wang, LC
    AUTOMATIC TARGET RECOGNITION VIII, 1998, 3371 : 388 - 397
  • [7] A statistical model for estimating porosity based on various parameters of flow through porous media
    Kango, Rajat
    Chandel, Abhishish
    Shankar, Vijay
    WATER PRACTICE AND TECHNOLOGY, 2024, 19 (05) : 1936 - 1947
  • [8] A neural network approach for estimating large K distribution parameters
    Smolíková, R
    Wachowiak, MP
    Zurada, JM
    Elmaghraby, AS
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 2139 - 2143
  • [10] The Use of Fuzzy Neural Networks for Estimating the Parameters of the K-Distribution
    Alioua, Chehla
    Soltani, Faouzi
    2009 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTATIONAL TOOLS FOR ENGINEERING APPLICATIONS, 2009, : 192 - +