Relating notions of convergence in geometric analysis

被引:14
作者
Allen, Brian [1 ]
Sormani, Christina [2 ,3 ]
机构
[1] Univ Hartford, Hartford, CT 06117 USA
[2] CUNY, Grad Ctr, New York, NY USA
[3] Lehman Coll, New York, NY USA
关键词
RIEMANNIAN-MANIFOLDS; RICCI CURVATURE; INTEGRAL BOUNDS; INTRINSIC FLAT; CONFORMAL METRICS; COMPACTNESS; SPACES; DISTANCE;
D O I
10.1016/j.na.2020.111993
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We relate L-p convergence of metric tensors or volume convergence to a given smooth metric to intrinsic flat and Gromov-Hausdorff convergence for sequences of Riemannian manifolds. We present many examples of sequences of conformal metrics which demonstrate that these notions of convergence do not agree in general even when the sequence is conformal, g(j) = f(j)(2)g(0), to a fixed manifold. We then prove a theorem demonstrating that when sequences of metric tensors on a fixed manifold M are bounded, (1 - 1/j)g(0) <= g(j) <= K g(0), and either the volumes converge, Vol(j) (M) -> Vol(0) (M), or the metric tensors converge in the L-p sense, then the Riemannian manifolds (M, g(j)) converge in the measured Gromov-Hausdorff and volume preserving intrinsic flat sense to (M, g(0)). (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:33
相关论文
共 41 条
[1]  
Aldana Clara L., 2018, WEIGHTS COMPACTNESS
[2]   CONTRASTING VARIOUS NOTIONS OF CONVERGENCE IN GEOMETRIC ANALYSIS [J].
Allen, Brian ;
Sormani, Christina .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 303 (01) :1-46
[3]   Warped tori with almost non-negative scalar curvature [J].
Allen, Brian ;
Hernandez-Vazquez, Lisandra ;
Parise, Davide ;
Payne, Alec ;
Wang, Shengwen .
GEOMETRIAE DEDICATA, 2019, 200 (01) :153-171
[4]   Sobolev bounds and convergence of Riemannian manifolds [J].
Allen, Brian ;
Bryden, Edward .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 185 :142-169
[5]   Currents in metric spaces [J].
Ambrosio, L ;
Kirchheim, B .
ACTA MATHEMATICA, 2000, 185 (01) :1-80
[6]  
Anderson M. T., 1991, GEOM FUNCT ANAL, V1, P231, DOI DOI 10.1007/BF01896203
[7]   Orbifold compactness for spaces of Riemannian metrics and applications [J].
Anderson, MT .
MATHEMATISCHE ANNALEN, 2005, 331 (04) :739-778
[8]   CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :429-445
[9]   Logarithmic potentials, quasiconformal flows, and Q-curvature [J].
Bonk, Mario ;
Heinonen, Juha ;
Saksman, Eero .
DUKE MATHEMATICAL JOURNAL, 2008, 142 (02) :197-239
[10]   Global existence and convergence for a higher order flow in conformal geometry [J].
Brendle, S .
ANNALS OF MATHEMATICS, 2003, 158 (01) :323-343