Hierarchical pinning model in correlated random environment

被引:9
作者
Berger, Quentin [1 ]
Toninelli, Fabio Lucio
机构
[1] Univ Lyon, F-69364 Lyon 07, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2013年 / 49卷 / 03期
关键词
Pinning models; Polymer; Disordered models; Harris criterion; Critical phenomena; Correlation; CRITICAL-BEHAVIOR; DISORDER; TRANSITION; RELEVANCE;
D O I
10.1214/12-AIHP493
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the hierarchical disordered pinning model studied in (J. Statist. Phys. 66 (1992) 1189-1213), which exhibits a localization/delocalization phase transition. In the case where the disorder is i.i.d. (independent and identically distributed), the question of relevance/irrelevance of disorder (i.e. whether disorder changes or not the critical properties with respect to the homogeneous case) is by now mathematically rather well understood (Probab. Theory Related Fields 148 (2010) 159-175, Pure Appl. Math. 63 (2010) 233-265). Here we consider the case where randomness is spatially correlated and correlations respect the hierarchical structure of the model; in the non-hierarchical model our choice would correspond to a power-law decay of correlations. In terms of the critical exponent of the homogeneous model and of the correlation decay exponent, we identify three regions. In the first one (non-summable correlations) the phase transition disappears. In the second one (correlations decaying fast enough) the system behaves essentially like in the i.i.d. setting and the relevance/irrelevance criterion is not modified. Finally, there is a region where the presence of correlations changes the critical properties of the annealed system.
引用
收藏
页码:781 / 816
页数:36
相关论文
共 24 条
  • [1] The effect of disorder on polymer depinning transitions
    Alexander, Kenneth S.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) : 117 - 146
  • [2] Quenched and Annealed Critical Points in Polymer Pinning Models
    Alexander, Kenneth S.
    Zygouras, Nikos
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (03) : 659 - 689
  • [3] [Anonymous], 2011, LECT NOTES MATH, DOI DOI 10.1007/978-3-642-21156-0
  • [4] Sharp critical behavior for pinning models in a random correlated environment
    Berger, Quentin
    Lacoin, Hubert
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1397 - 1436
  • [5] Bleher P. M., 1989, STOCHASTIC METHODS M, P171
  • [6] VARIATIONAL CHARACTERIZATION OF THE CRITICAL CURVE FOR PINNING OF RANDOM POLYMERS
    Cheliotis, Dimitris
    den Hollander, Frank
    [J]. ANNALS OF PROBABILITY, 2013, 41 (3B) : 1767 - 1805
  • [7] STUDY OF THE ITERATIONS OF A MAPPING ASSOCIATED TO A SPIN-GLASS MODEL
    COLLET, P
    ECKMANN, JP
    GLASER, V
    MARTIN, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (03) : 353 - 370
  • [8] EFFECT OF DISORDER ON 2-DIMENSIONAL WETTING
    DERRIDA, B
    HAKIM, V
    VANNIMENUS, J
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) : 1189 - 1213
  • [9] RENORMALIZATION-GROUP STUDY OF A DISORDERED MODEL
    DERRIDA, B
    GARDNER, E
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (16): : 3223 - 3236
  • [10] Fractional Moment Bounds and Disorder Relevance for Pinning Models
    Derrida, Bernard
    Giacomin, Giambattista
    Lacoin, Hubert
    Toninelli, Fabio Lucio
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (03) : 867 - 887