Programming adaptive control to evolve increased metabolite production

被引:161
作者
Chou, Howard H. [1 ,2 ,3 ]
Keasling, Jay D. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, UCSF UCB Joint Grad Grp Bioengn, Berkeley, CA 94720 USA
[2] Joint BioEnergy Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Synthet Biol Engn Res Ctr, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem & Engn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
ISOPENTENYL DIPHOSPHATE ISOMERASE; ESCHERICHIA-COLI K-12; TYRR PROTEIN; TRANSCRIPTION MACHINERY; DIRECTED EVOLUTION; MUTATION-RATES; REPRESSION; GENE; OLIGOMERIZATION; ACID;
D O I
10.1038/ncomms3595
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Construction of lycopene-overproducing E-coli strains by combining systematic and combinatorial gene knockout targets [J].
Alper, H ;
Miyaoku, K ;
Stephanopoulos, G .
NATURE BIOTECHNOLOGY, 2005, 23 (05) :612-616
[2]   Global transcription machinery engineering: A new approach for improving cellular phenotype [J].
Alper, Hal ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :258-267
[3]   Engineering yeast transcription machinery for improved ethanol tolerance and production [J].
Alper, Hal ;
Moxley, Joel ;
Nevoigt, Elke ;
Fink, Gerald R. ;
Stephanopoulos, Gregory .
SCIENCE, 2006, 314 (5805) :1565-1568
[4]   Genome evolution and adaptation in a long-term experiment with Escherichia coli [J].
Barrick, Jeffrey E. ;
Yu, Dong Su ;
Yoon, Sung Ho ;
Jeong, Haeyoung ;
Oh, Tae Kwang ;
Schneider, Dominique ;
Lenski, Richard E. ;
Kim, Jihyun F. .
NATURE, 2009, 461 (7268) :1243-U74
[5]   Production of isoprenoid pharmaceuticals by engineered microbes [J].
Chang, Michelle C. Y. ;
Keasling, Jay D. .
NATURE CHEMICAL BIOLOGY, 2006, 2 (12) :674-681
[6]   MUTATIONAL UNCOUPLING OF THE TRANSCRIPTIONAL ACTIVATION FUNCTION OF THE TYRR PROTEIN OF ESCHERICHIA-COLI K-12 FROM THE REPRESSION FUNCTION [J].
CUI, JS ;
SOMERVILLE, RL .
JOURNAL OF BACTERIOLOGY, 1993, 175 (01) :303-306
[7]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[8]   Monoclinic form of isopentenyl diphosphate isomerase: a case of polymorphism in biomolecular crystals [J].
de Ruyck, Jerome ;
Oudjama, Yamina ;
Wouters, Johan .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2008, 64 :239-242
[9]   The Balance Between Mutators and Nonmutators in Asexual Populations [J].
Desai, Michael M. ;
Fisher, Daniel S. .
GENETICS, 2011, 188 (04) :997-1014
[10]   High-Throughput Metabolic Engineering: Advances in Small-Molecule Screening and Selection [J].
Dietrich, Jeffrey A. ;
McKee, Adrienne E. ;
Keasling, Jay D. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 79, 2010, 79 :563-590