Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy

被引:115
作者
Greenbaum, Alon [1 ]
Luo, Wei [1 ]
Khademhosseinieh, Bahar [1 ]
Su, Ting-Wei [1 ]
Coskun, Ahmet F. [1 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA USA
[4] Univ Calif Los Angeles, Sch Med, Dept Surg, Los Angeles, CA 90024 USA
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
美国国家科学基金会;
关键词
HOLOGRAPHIC MICROSCOPY; IMAGE-RECONSTRUCTION; BLIND DECONVOLUTION; DIGITAL HOLOGRAPHY; SUPERRESOLUTION; WIDE; VOLUME;
D O I
10.1038/srep01717
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pixel-size limitation of lensfree on-chip microscopy can be circumvented by utilizing pixel-super-resolution techniques to synthesize a smaller effective pixel, improving the resolution. Here we report that by using the two-dimensional pixel-function of an image sensor-array as an input to lensfree image reconstruction, pixel-super-resolution can improve the numerical aperture of the reconstructed image by similar to 3 fold compared to a raw lensfree image. This improvement was confirmed using two different sensor-arrays that significantly vary in their pixel-sizes, circuit architectures and digital/optical readout mechanisms, empirically pointing to roughly the same space-bandwidth improvement factor regardless of the sensor-array employed in our set-up. Furthermore, such a pixel-count increase also renders our on-chip microscope into a Giga-pixel imager, where an effective pixel count of similar to 1.6-2.5 billion can be obtained with different sensors. Finally, using an ultra-violet light-emitting-diode, this platform resolves 225 nm grating lines and can be useful for wide-field on-chip imaging of nano-scale objects, e. g., multi-walled-carbon-nanotubes.
引用
收藏
页数:8
相关论文
共 49 条
  • [1] Bacteria detection with thin wetting film lensless imaging
    Allier, C. P.
    Hiernard, G.
    Poher, V.
    Dinten, J. M.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2010, 1 (03): : 762 - 770
  • [2] Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field
    Almoro, Percival
    Pedrini, Giancarlo
    Osten, Wolfgang
    [J]. APPLIED OPTICS, 2006, 45 (34) : 8596 - 8605
  • [3] Acceleration of iterative image restoration algorithms
    Biggs, DSC
    Andrews, M
    [J]. APPLIED OPTICS, 1997, 36 (08): : 1766 - 1775
  • [4] Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array
    Bishara, Waheb
    Sikora, Uzair
    Mudanyali, Onur
    Su, Ting-Wei
    Yaglidere, Oguzhan
    Luckhart, Shirley
    Ozcan, Aydogan
    [J]. LAB ON A CHIP, 2011, 11 (07) : 1276 - 1279
  • [5] Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution
    Bishara, Waheb
    Su, Ting-Wei
    Coskun, Ahmet F.
    Ozcan, Aydogan
    [J]. OPTICS EXPRESS, 2010, 18 (11): : 11181 - 11191
  • [6] Compressive Holography
    Brady, David J.
    Choi, Kerkil
    Marks, Daniel L.
    Horisaki, Ryoichi
    Lim, Sehoon
    [J]. OPTICS EXPRESS, 2009, 17 (15): : 13040 - 13049
  • [7] Digital holography for quantitative phase-contrast imaging
    Cuche, E
    Bevilacqua, F
    Depeursinge, C
    [J]. OPTICS LETTERS, 1999, 24 (05) : 291 - 293
  • [8] A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur
    Elad, M
    Hel-Or, Y
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (08) : 1187 - 1193
  • [9] Multiframe demosaicing and super-resolution of color images
    Farsiu, S
    Elad, M
    Milanfar, P
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (01) : 141 - 159
  • [10] Fontaine Ray., 2011, Advanced Semiconductor Manufacturing Conference (ASMC), 2011 22nd Annual IEEE/SEMI, P1