THE CHSH-TYPE INEQUALITIES FOR INFINITE-DIMENSIONAL QUANTUM SYSTEMS

被引:0
|
作者
Guo, Yu [1 ,2 ]
机构
[1] Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R China
[2] Taiyuan Univ Technol, Inst Optoelect Engn, Taiyuan 030024, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2013年 / 27卷 / 21期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Entanglement; CHSH-type inequality; distillation; infinite-dimensional system; BELL INEQUALITY; STATES; ENTANGLEMENT; SEPARABILITY; SUFFICIENT;
D O I
10.1142/S0217984913501510
中图分类号
O59 [应用物理学];
学科分类号
摘要
By establishing CHSH operators and CHSH-type inequalities, we show that any entangled pure state in infinite-dimensional systems is entangled in a 2 circle times 2 subspace. We find that, for infinite-dimensional systems, the corresponding properties are similar to that of the two-qubit case: (i) The CHSH-type inequalities provide a sufficient and necessary condition for separability of pure states; (ii) The CHSH operators satisfy the Cirel'son inequalities; (iii) Any state which violates one of these Bell inequalities is distillable.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Transfer functions for infinite-dimensional systems
    Zwart, H
    SYSTEMS & CONTROL LETTERS, 2004, 52 (3-4) : 247 - 255
  • [22] Constructing Separable States in Infinite-Dimensional Systems by Operator Matrices
    Hou, Jinchuan
    Chai, Jinfei
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (06) : 2028 - 2037
  • [23] Backstepping stabilization for cascade infinite-dimensional systems
    Wang, Xingcheng
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 1368 - 1372
  • [24] Constructing entanglement witnesses for infinite-dimensional systems
    Hou, Jinchuan
    Qi, Xiaofei
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [25] General Bell-CHSH type and entropic inequalities based on quantum tomograms
    Akopyan, L. V.
    Man'ko, V. I.
    OPTICS AND SPECTROSCOPY, 2011, 111 (04) : 656 - 665
  • [26] ε-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systems
    Owari, Masaki
    Braunstein, Samuel L.
    Nemoto, Kae
    Murao, Mio
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (1-2) : 30 - 52
  • [27] Bifurcation of Relative Equilibria in Infinite-Dimensional Hamiltonian Systems
    Yagasaki, Kazuyuki
    Yamazoe, Shotaro
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (01): : 393 - 417
  • [28] H~∞-IDENTIFICATION OF INFINITE-DIMENSIONAL LINEAR STOCHASTIC SYSTEMS
    WEI Chen
    GUO Lei (Institute of Systems Science
    SystemsScienceandMathematicalSciences, 1995, (01) : 88 - 96
  • [29] A Kernel Representation of Dirac Structures for Infinite-dimensional Systems
    Iftime, O. V.
    Roman, M.
    Sandovici, A.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2014, 9 (05) : 295 - 308
  • [30] Framework for resource quantification in infinite-dimensional general probabilistic theories
    Lami, Ludovico
    Regula, Bartosz
    Takagi, Ryuji
    Ferrari, Giovanni
    PHYSICAL REVIEW A, 2021, 103 (03)