Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends

被引:81
|
作者
Imre, B. [1 ,2 ]
Renner, K. [1 ,2 ]
Pukanszky, B. [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Phys Chem & Mat Sci, Lab Plast & Rubber Technol, H-1521 Budapest, Hungary
[2] Hungarian Acad Sci, Res Ctr Nat Sci, Inst Mat & Environm Chem, H-1525 Budapest, Hungary
来源
EXPRESS POLYMER LETTERS | 2014年 / 8卷 / 01期
关键词
polymer blends and alloys; poly(lactic acid); dispersed structure; miscibility; structure-property correlations; LOW-MOLECULAR-WEIGHT; MECHANICAL-PROPERTIES; POLY(L-LACTIC ACID); LACTIC-ACID; POLYLACTIDE COMPOSITIONS; TENSILE PROPERTIES; TRIBUTYL CITRATE; FILLER CONTENT; MISCIBILITY; STARCH;
D O I
10.3144/expresspolymlett.2014.2
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Blends were prepared from poly(lactic acid) (PLA) and three thermoplastics, polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA). Rheological and mechanical properties, structure and component interactions were determined by various methods. The results showed that the structure and properties of the blends cover a relatively wide range. All three blends have heterogeneous structure, but the size of the dispersed particles differs by an order of magnitude indicating dissimilar interactions for the corresponding pairs. Properties change accordingly, the blend containing the smallest dispersed particles has the largest tensile strength, while PLA/PS blends with the coarsest structure have the smallest. The latter blends are also very brittle. Component interactions were estimated by four different methods, the determination of the size of the dispersed particles, the calculation of the Flory-Huggins interaction parameter from solvent absorption, from solubility parameters, and by the quantitative evaluation of the composition dependence of tensile strength. All approaches led to the same result indicating strong interaction for the PLA/PMMA pair and weak for PLA and PS. A general correlation was established between interactions and the mechanical properties of the blends.
引用
收藏
页码:2 / 14
页数:13
相关论文
共 50 条
  • [21] Poly(lactic acid) blends with desired end-use properties by addition of thermoplastic polyester elastomer and MDI
    Zaman, Haydar U.
    Song, Jun Cheol
    Park, Lee-Soon
    Kang, Inn-Kyu
    Park, Soo-Young
    Kwak, Giseop
    Park, Byung-sik
    Yoon, Keun-Byoung
    POLYMER BULLETIN, 2011, 67 (01) : 187 - 198
  • [22] Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid)
    Teixeira, Eliangela de M.
    Curvelo, Antonio A. S.
    Correa, Ana C.
    Marconcini, Jose M.
    Glenn, Gregory M.
    Mattoso, Luiz H. C.
    INDUSTRIAL CROPS AND PRODUCTS, 2012, 37 (01) : 61 - 68
  • [23] Ternary blends from biodegradable poly(L-lactic acid), poly(ε-caprolactone) and poly(vinyl acetate) with balanced properties
    Cheng, Hongda
    Li, Yi
    Zhang, Ye
    Yu, Yancun
    Yu, Mengdie
    Han, Changyu
    Shi, Hechang
    JOURNAL OF POLYMER RESEARCH, 2023, 30 (05)
  • [24] MECHANICAL PROPERTIES, MORPHOLOGY, AND HYDROLYTIC DEGRADATION BEHAVIOR OF POLY LACTIC ACID/THERMOPLASTIC POLYURETHANE BLENDS
    Buys, Yose Fachmi
    Ahmad, Mimi Syakina
    Anuar, Hazleen
    Mahmud, Mudrikah Sofia
    Nasir, Nur Aimi Mohd
    IIUM ENGINEERING JOURNAL, 2020, 21 (01): : 193 - 201
  • [25] Toughness and Compatibility Improvement of Thermoplastic Starch/Poly(lactic acid) Blends
    Tachaphiboonsap, Sujaree
    Jarukumjorn, Kasama
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES IV, 2013, 747 : 67 - 71
  • [26] Rheological and mechanical characterization of poly(lactic acid)/polypropylene polymer blends
    Hamad, Kotiba
    Kaseem, Mosab
    Deri, Fawaz
    JOURNAL OF POLYMER RESEARCH, 2011, 18 (06) : 1799 - 1806
  • [27] Crystallization behavior of poly(lactic acid)/poly(ε-caprolactone) blends
    Lee, JR
    Chun, SW
    Kang, HJ
    POLYMER-KOREA, 2003, 27 (04) : 285 - 292
  • [28] Compatible and Crystallization Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends
    Yeh, Jen-Taut
    Tsou, Chi-Hui
    Huang, Chi-Yuan
    Chen, Kan-Nan
    Wu, Chin-San
    Chai, Wan-Lan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 116 (02) : 680 - 687
  • [29] Miscibility evaluation of poly(L-lactic acid)/poly(lactic acid-co-lysine) blends
    Yao, Junyan
    Zhang, Shijie
    Li, Wudan
    Li, Yujie
    Journal of Applied Biomaterials & Functional Materials, 2016, 14 (03): : E230 - E239
  • [30] Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends
    Broz, ME
    VanderHart, DL
    Washburn, NR
    BIOMATERIALS, 2003, 24 (23) : 4181 - 4190