LINEAR METHODS FOR APPROXIMATION OF SOME CLASSES OF HOLOMORPHIC FUNCTIONS FROM THE BERGMAN SPACE

被引:0
作者
Savchuk, V. V. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, Kiev, Ukraine
关键词
Holomorphic Function; Hardy Space; Linear Method; Polynomial Approximation; BERGMAN Space;
D O I
10.1007/s11253-008-0104-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a linear method {Q(n,psi)}(n is an element of N) for the approximation (in the unit disk) of classes of holomorphic functions A(p)(psi) that are the Hadamard convolutions of the unit balls of the Bergman space A(p) with reproducing kernels psi(Z) = Sigma(infinity)(k=0) psi(Zk)(k). We give conditions for psi under which the method {Q(n,psi)}(n is an element of N) approximates the class A(p)(psi) in the metrics of the Hardy space H(s) and the Bergman space A(s), 1 <= s <= p, with an error that coincides in order with the value of the best approximation by algebraic polynomials.
引用
收藏
页码:910 / 926
页数:17
相关论文
共 14 条
[1]  
Babenko K.I., 1958, Izv. AN SSSR. Ser. Matem., V22, P631
[2]  
Bari N.K., 1961, Trigonometric Series
[3]  
BELYI VI, 1971, METRIC PROBLEMS THEO, V5, P37
[4]  
Butzer Paul L., 1971, Fourier Analysis and Approximation: One Dimensional Theory
[5]  
DVEIRIN MZ, 1977, THEORY MAPPINGS APPR, P285
[6]  
GAVRILYUK VT, 2005, UKR MAT ZH, V43, P291
[7]  
Korneichuk N.P., 1976, EXTREMAL PROBLEMS AP
[8]   POLYNOMIAL APPROXIMATION OF FUNCTIONS ANALYTIC IN A DISK [J].
SCHEICK, JT .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (06) :1238-&
[9]  
Stepanets A. I., 2002, Methods of Approximation Theory, V1
[10]  
STEPANETS AI, 2002, UKR MAT ZH, V54, P706