Scaffold Fabrication Techniques of Biomaterials for Bone Tissue Engineering: A Critical Review

被引:49
作者
Bhushan, Sakchi [1 ]
Singh, Sandhya [1 ]
Maiti, Tushar Kanti [2 ]
Sharma, Chhavi [2 ]
Dutt, Dharm [1 ]
Sharma, Shubham [3 ,4 ]
Li, Changhe [4 ]
Tag Eldin, Elsayed Mohamed [5 ]
机构
[1] IIT Roorkee, Dept Paper Technol, Saharanpur 247001, India
[2] IIT Roorkee, Dept Polymer & Proc Engn, Saharanpur 247001, India
[3] Chandigarh Univ, Univ Ctr Res & Dev, Mech Engn Dept, Mohali 140413, India
[4] Qingdao Univ Technol, Sch Mech & Automot Engn, Qingdao 266520, Peoples R China
[5] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt
来源
BIOENGINEERING-BASEL | 2022年 / 9卷 / 12期
关键词
bone tissue engineering; fabrication; biocompatibility; electrohydrodynamic behavior; additive manufacturing techniques; 4D printing; clinical trials;
D O I
10.3390/bioengineering9120728
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials.
引用
收藏
页数:39
相关论文
共 223 条
[51]  
Franssila S., 2010, INTRO MICROFABRICATI, DOI [10.1002/9781119990413, DOI 10.1002/9781119990413]
[52]   4D Bioprinting for Biomedical Applications [J].
Gao, Bin ;
Yang, Qingzhen ;
Zhao, Xin ;
Jin, Guorui ;
Ma, Yufei ;
Xu, Feng .
TRENDS IN BIOTECHNOLOGY, 2016, 34 (09) :746-756
[53]   Calcium-Silicate-Incorporated Gellan-Chitosan Induced Osteogenic Differentiation in Mesenchymal Stromal Cells [J].
Genasan, Krishnamurithy ;
Mehrali, Mohammad ;
Veerappan, Tarini ;
Talebian, Sepehr ;
Malliga Raman, Murali ;
Singh, Simmrat ;
Swamiappan, Sasikumar ;
Mehrali, Mehdi ;
Kamarul, Tunku ;
Balaji Raghavendran, Hanumantha Rao .
POLYMERS, 2021, 13 (19)
[54]   Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration [J].
Geng, Mengru ;
Zhang, Qianqian ;
Gu, Jiani ;
Yang, Jin ;
Du, Haibo ;
Jia, Yating ;
Zhou, Xiaojun ;
He, Chuanglong .
BIOMATERIALS SCIENCE, 2021, 9 (07) :2631-2646
[55]   Development of 3D bioprinting: From printing methods to biomedical applications [J].
Gu, Zeming ;
Fu, Jianzhong ;
Lin, Hui ;
He, Yong .
ASIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 15 (05) :529-557
[56]   Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair [J].
Guillaume, O. ;
Geven, M. A. ;
Sprecher, C. M. ;
Stadelmann, V. A. ;
Grijpma, D. W. ;
Tang, T. T. ;
Qin, L. ;
Lai, Y. ;
Alini, M. ;
de Bruijn, J. D. ;
Yuan, H. ;
Richards, R. G. ;
Eglin, D. .
ACTA BIOMATERIALIA, 2017, 54 :386-398
[57]   Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review [J].
Guillen, Gregory R. ;
Pan, Yinjin ;
Li, Minghua ;
Hoek, Eric M. V. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (07) :3798-3817
[58]   Laser assisted bioprinting of engineered tissue with high cell density and microscale organization [J].
Guillotin, Bertrand ;
Souquet, Agnes ;
Catros, Sylvain ;
Duocastella, Marti ;
Pippenger, Benjamin ;
Bellance, Severine ;
Bareille, Reine ;
Remy, Murielle ;
Bordenave, Laurence ;
Amedee, Joelle ;
Guillemot, Fabien .
BIOMATERIALS, 2010, 31 (28) :7250-7256
[59]   Vitamin D3/vitamin K2/magnesium-loaded polylactic acid/tricalcium phosphate/polycaprolactone composite nanofibers demonstrated osteoinductive effect by increasing Runx2 via Wnt/β-catenin pathway [J].
Guler, Ece ;
Baripoglu, Yaren Ezgi ;
Alenezi, Hussain ;
Arikan, Ayca ;
Babazade, Ravana ;
Unal, Semra ;
Duruksu, Gokhan ;
Alfares, Fawzan S. ;
Yazir, Yusufhan ;
Oktar, Faik Nuzhet ;
Gunduz, Oguzhan ;
Edirisinghe, Mohan ;
Cam, Muhammet Emin .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 190 :244-258
[60]  
Guney E., 2020, J Indian Chem Soc., V97, P2006