The Poincare inequality is an open ended condition

被引:159
作者
Keith, Stephen [1 ]
Zhong, Xiao [2 ]
机构
[1] Australian Natl Univ, Canberra, ACT, Australia
[2] Univ Jyvaskyla, Jyvaskyla, Finland
基金
芬兰科学院; 澳大利亚研究理事会;
关键词
D O I
10.4007/annals.2008.167.575
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p > 1 and let (X, d, mu) be a complete metric measure space with mu Borel and doubling that admits a (1, p)-Poincare inequality. Then there exists epsilon > 0 such that (X, d, mu) admits a, (1, q)-Poincare inequality for every q > p - epsilon, quantitatively.
引用
收藏
页码:575 / 599
页数:25
相关论文
共 49 条
[1]  
AMBROSIO L., 2004, Oxford Lecture Ser. Math. Appl., V25
[2]  
[Anonymous], 2001, SOME NOVEL TYPES FRA
[3]   Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces [J].
Björn, J ;
MacManus, P ;
Shanmugalingam, N .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :339-369
[4]   Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary [J].
Bonk, M ;
Kleiner, B .
GEOMETRY & TOPOLOGY, 2005, 9 :219-246
[5]  
Boyarski B. V., 1955, Dokl. Akad. Nauk SSSR, V102, P661
[6]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[7]  
Christ M, 1990, CBMS Regional Conference Series in Mathematics, V77
[8]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[9]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[10]  
Coifman RR., 1971, Lect. Notes Math., DOI 10.1007/BFb0058946