Value of Presurgical 18F-FDG PET/CT Radiomics for Predicting Mediastinal Lymph Node Metastasis in Patients with Lung Adenocarcinoma

被引:6
作者
Dai, Meng [1 ,2 ]
Wang, Na [1 ,2 ]
Zhao, Xinming [1 ,2 ]
Zhang, Jianyuan [3 ]
Zhang, Zhaoqi [1 ]
Zhang, Jingmian [1 ]
Wang, Jianfang [1 ]
Hu, Yujing [4 ]
Liu, Yunuan [1 ]
Zhao, Xiujuan [1 ]
Chen, Xiaolin [1 ]
机构
[1] Hebei Med Univ, Hosp 4, Dept Nucl Med, Shijiazhuang, Peoples R China
[2] Hebei Prov Key Lab Tumor Microenvironm & Drug Resi, Shijiazhuang, Peoples R China
[3] Baoding No 1 Cent Hosp, Dept Nucl Med, Baoding, Peoples R China
[4] Hebei Gen Hosp, Dept Nucl Med, Shijiazhuang, Peoples R China
关键词
F-18-FDG PET; CT; lung adenocarcinoma; lymph node metastasis; radiomics; CANCER; IMAGES; MODEL;
D O I
10.1089/cbr.2022.0038
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objective: The aim of this study was to develop an F-fluorodeoxyglucose (F-18-FDG) positron emission tomography/computed tomography (PET/CT) radiomic model for predicting mediastinal lymph node metastasis (LNM) in presurgical patients with lung adenocarcinoma.Methods: The study enrolled 320 patients with lung adenocarcinoma (288 internal and 32 external cases) and extracted 190 radiomic features using the LIFEx package. Optimal radiomic features to build a radiomic model were selected using the least absolute shrinkage and selection operator algorithm. Logistic regression was used to build the clinical and complex (combined radiomic and clinical variables) models.Results: Ten radiomic features were selected. In the training group, the area under the receiver operating characteristic curve of the complex model was significantly higher than that of the radiomic and clinical models [0.924 (95% CI: 0.887-0.961) vs. 0.863 (95% CI: 0.814-0.912; p = 0.001) and 0.838 (95% CI: 0.783-0.894; p = 0.000), respectively]. The sensitivity, specificity, accuracy, and positive and negative predictive values of the radiomic model were 0.857, 0.790, 0.811, and 0.651 and 0.924, respectively, which were better than that of visual evaluation (0.539, 0.724, 0.667, and 0.472 and 0.775, respectively) and PET semiquantitative analyses (0.619, 0.732, 0.697, and 0.513 and 0.808, respectively).Conclusions: F-18-FDG PET/CT radiomics showed good predictive performance for LNM and improved the N-stage accuracy of lung adenocarcinoma.
引用
收藏
页码:600 / 610
页数:11
相关论文
共 29 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer [J].
Bashir, Usman ;
Azad, Gurdip ;
Siddique, Muhammad Musib ;
Dhillon, Saana ;
Patel, Nikheel ;
Bassett, Paul ;
Landau, David ;
Goh, Vicky ;
Cook, Gary .
EJNMMI RESEARCH, 2017, 7
[3]   Development of a PET/CT molecular radiomics-clinical model to predict thoracic lymph node metastasis of invasive lung adenocarcinoma ≤ 3 cm in diameter [J].
Chang, Cheng ;
Ruan, Maomei ;
Lei, Bei ;
Yu, Hong ;
Zhao, Wenlu ;
Ge, Yaqiong ;
Duan, Shaofeng ;
Teng, Wenjing ;
Wu, Qianfu ;
Qian, Xiaohua ;
Wang, Lihua ;
Yan, Hui ;
Liu, Ciyi ;
Liu, Liu ;
Feng, Jian ;
Xie, Wenhui .
EJNMMI RESEARCH, 2022, 12 (01)
[4]   Development of a predictive radiomics model for lymph node metastases in pre-surgical CT-based stage IA non-small cell lung cancer [J].
Cong, Mengdi ;
Feng, Hui ;
Ren, Jia-Liang ;
Xu, Qian ;
Cong, Lining ;
Hou, Zhenzhou ;
Wang, Yuan-Yuan ;
Shi, Gaofeng .
LUNG CANCER, 2020, 139 :73-79
[5]   Radiomic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC [J].
Coroller, Thibaud P. ;
Agrawal, Vishesh ;
Huynh, Elizabeth ;
Narayan, Vivek ;
Lee, Stephanie W. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (03) :467-476
[6]   CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma [J].
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Hou, Ying ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Hermann, Gretchen ;
Lambin, Philippe ;
Haibe-Kains, Benjamin ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) :345-350
[7]   Randomized trial of mediastinal lymph node sampling versus complete lymphadenectomy during pulmonary resection in the patient with N0 or N1 (less than hilar) non-small cell carcinoma: Results of the American College of Surgery Oncology Group Z0030 Trial [J].
Darling, Gail E. ;
Allen, Mark S. ;
Decker, Paul A. ;
Ballman, Karla ;
Malthaner, Richard A. ;
Inculet, Richard I. ;
Jones, David R. ;
McKenna, Robert J. ;
Landreneau, Rodney J. ;
Rusch, Valerie W. ;
Putnam, Joe B., Jr. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2011, 141 (03) :662-670
[8]   Non-Small Cell Lung Cancer, Version 2.2021 Featured Updates to the NCCN Guidelines [J].
Ettinger, David S. ;
Wood, Douglas E. ;
Aisner, Dara L. ;
Akerley, Wallace ;
Bauman, Jessica R. ;
Bharat, Ankit ;
Bruno, Debora S. ;
Chang, Joe Y. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
Dilling, Thomas J. ;
Dowell, Jonathan ;
Gettinger, Scott ;
Gubens, Matthew A. ;
Hegde, Aparna ;
Hennon, Mark ;
Lackner, Rudy P. ;
Lanuti, Michael ;
Leal, Ticiana A. ;
Lin, Jules ;
Loo, Billy W., Jr. ;
Lovly, Christine M. ;
Martins, Renato G. ;
Massarelli, Erminia ;
Morgensztern, Daniel ;
Ng, Thomas ;
Otterson, Gregory A. ;
Patel, Sandip P. ;
Riely, Gregory J. ;
Schild, Steven E. ;
Shapiro, Theresa A. ;
Singh, Aditi P. ;
Stevenson, James ;
Tam, Alda ;
Yanagawa, Jane ;
Yang, Stephen C. ;
Gregory, Kristina M. ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (03) :254-266
[9]   Non-Small Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT [J].
Ganeshan, Balaji ;
Goh, Vicky ;
Mandeville, Henry C. ;
Quan Sing Ng ;
Hoskin, Peter J. ;
Miles, Kenneth A. .
RADIOLOGY, 2013, 266 (01) :326-336
[10]   The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from 18F-FDG PET-CT images for the evaluation of mediastinal lymph nodes inpatients with lung cancer [J].
Gao, Xuan ;
Chu, Chunyu ;
Li, Yingci ;
Lu, Peiou ;
Wang, Wenzhi ;
Liu, Wanyu ;
Yu, Lijuan .
EUROPEAN JOURNAL OF RADIOLOGY, 2015, 84 (02) :312-317