STABILITY ANALYSIS OF THE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD FOR THE WAVE EQUATION

被引:12
作者
Agut, Cyril [1 ]
Diaz, Julien [2 ]
机构
[1] Univ Pau, LMAP, INRIA Project Team Magique 3D, Pau, France
[2] Univ Pau, INRIA, Project Team Magique 3D, Pau, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2013年 / 47卷 / 03期
关键词
Discontinuous Galerkin; penalization coefficient; CFL condition; wave equation; FINITE-ELEMENT-METHOD;
D O I
10.1051/m2an/2012061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap-Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.
引用
收藏
页码:903 / 932
页数:30
相关论文
共 22 条
[1]  
Agut C, 2010, STABILITY ANAL INTER
[2]   Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation [J].
Ainsworth, M. ;
Monk, P. ;
Muniz, W. .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) :5-40
[3]   A discontinuous finite element formulation for Helmholtz equation [J].
Alvarez, Gustavo Benitez ;
Dourado Loula, Abimael Fernando ;
Dutra do Carmo, Eduardo Gomes ;
Rochinha, Fernando Alves .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (33-36) :4018-4035
[4]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[5]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[6]  
Baldassari C., 2009, THESIS
[7]  
Cohen G., 1994, Finite Elements in Analysis and Design, V16, P329, DOI 10.1016/0168-874X(94)90075-2
[8]  
Cohen G., 2001, Higher-order numerical methods for transient wave equations
[9]  
Cohen S., 2006, SIAM J NUMER ANAL, V44, P2408
[10]   THE APPLICATION OF HIGH-ORDER DIFFERENCING TO THE SCALAR WAVE-EQUATION [J].
DABLAIN, MA .
GEOPHYSICS, 1986, 51 (01) :54-66