CNN-Based Real-Time Parameter Tuning for Optimizing Denoising Filter Performance

被引:5
|
作者
Mukherjee, Subhayan [1 ]
Kottayil, Navaneeth Kamballur [1 ]
Sun, Xinyao [1 ]
Cheng, Irene [1 ]
机构
[1] Univ Alberta, Edmonton, AB T6G 2R3, Canada
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I | 2019年 / 11662卷
关键词
Filter parameter tuning; CNN; Denoising; BM3D; GPU; IMAGE; SPARSE; REPRESENTATIONS; ALGORITHM;
D O I
10.1007/978-3-030-27202-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel direction to improve the denoising quality of filtering-based denoising algorithms in real time by predicting the best filter parameter value using a Convolutional Neural Network (CNN). We take the use case of BM3D, the state-of-the-art filtering-based denoising algorithm, to demonstrate and validate our approach. We propose and train a simple, shallow CNN to predict in real time, the optimum filter parameter value, given the input noisy image. Each training example consists of a noisy input image (training data) and the filter parameter value that produces the best output (training label). Both qualitative and quantitative results using the widely used PSNR and SSIM metrics on the popular BSD68 dataset show that the CNN-guided BM3D outperforms the original, unguided BM3D across different noise levels. Thus, our proposed method is a CNN-based improvement on the original BM3D which uses a fixed, default parameter value for all images.
引用
收藏
页码:112 / 125
页数:14
相关论文
共 50 条
  • [31] Real-time attacks on robust watermarking tools in the wild by CNN
    Geng, Linfeng
    Zhang, Weiming
    Chen, Haozhe
    Fang, Han
    Yu, Nenghai
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (03) : 631 - 641
  • [32] REAL-TIME VIDEO DENOISING ON MOBILE PHONES
    Ehmann, Lana
    Chu, Lun-Cheng
    Tsai, Sung-Fang
    Liang, Chia-Kai
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 505 - 509
  • [33] Enhancing signal-to-noise ratio in real-time LED-based photoacoustic imaging: A comparative study of CNN-based deep learning architectures
    Paul, Avijit
    Mallidi, Srivalleesha
    PHOTOACOUSTICS, 2025, 41
  • [34] Hardware implementation of a spatio-temporal average filter for real-time denoising of fluoroscopic images
    Genovese, M.
    Bifulco, P.
    De Caro, D.
    Napoli, E.
    Petra, N.
    Romano, M.
    Cesarelli, M.
    Strollo, A. G. M.
    INTEGRATION-THE VLSI JOURNAL, 2015, 49 : 114 - 124
  • [35] CEPDNet: a fast CNN-based image denoising network using edge computing platform
    Bai, Xuefei
    Wan, Yongsong
    Wang, Weiming
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [36] FPGA-Based CNN for Real-Time UAV Tracking and Detection
    Hobden, Peter
    Srivastava, Saket
    Nurellari, Edmond
    FRONTIERS IN SPACE TECHNOLOGIES, 2022, 3
  • [37] Implementation of CNN on Zynq based FPGA for Real-time Object Detection
    Sharma, Aman
    Singh, Vijander
    Rani, Asha
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [38] Thermal Time Constant CNN-Based Spectrometry for Biomedical Applications
    Strakowska, Maria
    Strzelecki, Michal
    SENSORS, 2023, 23 (15)
  • [39] Real-Time Earthquake Location Based on the Kalman Filter Formulation
    Chen, Yukuan
    Zhang, Haijiang
    Eaton, David W.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (11)
  • [40] Median Filter Aided CNN Based Image Denoising: An Ensemble Approach
    Dey, Subhrajit
    Bhattacharya, Rajdeep
    Schwenker, Friedhelm
    Sarkar, Ram
    ALGORITHMS, 2021, 14 (04)