CNN-Based Real-Time Parameter Tuning for Optimizing Denoising Filter Performance

被引:5
|
作者
Mukherjee, Subhayan [1 ]
Kottayil, Navaneeth Kamballur [1 ]
Sun, Xinyao [1 ]
Cheng, Irene [1 ]
机构
[1] Univ Alberta, Edmonton, AB T6G 2R3, Canada
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I | 2019年 / 11662卷
关键词
Filter parameter tuning; CNN; Denoising; BM3D; GPU; IMAGE; SPARSE; REPRESENTATIONS; ALGORITHM;
D O I
10.1007/978-3-030-27202-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel direction to improve the denoising quality of filtering-based denoising algorithms in real time by predicting the best filter parameter value using a Convolutional Neural Network (CNN). We take the use case of BM3D, the state-of-the-art filtering-based denoising algorithm, to demonstrate and validate our approach. We propose and train a simple, shallow CNN to predict in real time, the optimum filter parameter value, given the input noisy image. Each training example consists of a noisy input image (training data) and the filter parameter value that produces the best output (training label). Both qualitative and quantitative results using the widely used PSNR and SSIM metrics on the popular BSD68 dataset show that the CNN-guided BM3D outperforms the original, unguided BM3D across different noise levels. Thus, our proposed method is a CNN-based improvement on the original BM3D which uses a fixed, default parameter value for all images.
引用
收藏
页码:112 / 125
页数:14
相关论文
共 50 条
  • [21] Real-time video denoising on multicores and GPUs with Kalman-based and Bilateral filters fusion
    Pfleger, Sergio G.
    Plentz, Patricia D. M.
    Rocha, Rodrigo C. O.
    Pereira, Alyson D.
    Castro, Marcio
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (05) : 1629 - 1642
  • [22] Impact of Traditional and Embedded Image Denoising on CNN-Based Deep Learning
    Kaur, Roopdeep
    Karmakar, Gour
    Imran, Muhammad
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [23] FFDNet: Toward a Fast and Flexible Solution for CNN-Based Image Denoising
    Zhang, Kai
    Zuo, Wangmeng
    Zhang, Lei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4608 - 4622
  • [24] CNN-based battlefield classification and camouflage texture generation for real environment
    Choudhary, Sachi
    Sharma, Rashmi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2023, 26 (03) : 231 - 242
  • [25] CNN-based CT denoising with an accurate image domain noise insertion technique
    Kim, Byeongjoon
    Divel, Sarah E.
    Pelc, Norbert J.
    Baek, Jongduk
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [26] Optimizing a medical image registration algorithm based on profiling data for real-time performance
    Gulo, Carlos A. S. J.
    Sementille, Antonio C.
    Tavares, Joao Manuel R. S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (02) : 2603 - 2620
  • [27] A CNN-BASED MULTICHANNEL INTERFEROMETRIC PHASE DENOISING METHOD APPLIED TO TOMOSAR IMAGING
    Li, Jie
    Xu, Zhongqiu
    Li, Zhiyuan
    Zhang, Bingchen
    Wu, Yirong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3448 - 3451
  • [28] Parameter Tuning Model for Optimizing Application Performance on GPU
    Nhat-Phuong Tran
    Lee, Myungho
    2016 IEEE 1ST INTERNATIONAL WORKSHOPS ON FOUNDATIONS AND APPLICATIONS OF SELF* SYSTEMS (FAS*W), 2016, : 78 - 83
  • [29] Preliminary research of real-time denoising algorithm based on wavelet theory
    Xiang Yunfeng
    Li Jianping
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE INFORMATION COMPUTING AND AUTOMATION, VOLS 1-3, 2008, : 724 - 727
  • [30] Real-Time Subspace Denoising of Polysomnographic Data
    Metsis, Vangelis
    Schizas, Ioannis D.
    Marshall, Gregg
    8TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2015), 2015,