CNN-Based Real-Time Parameter Tuning for Optimizing Denoising Filter Performance

被引:5
|
作者
Mukherjee, Subhayan [1 ]
Kottayil, Navaneeth Kamballur [1 ]
Sun, Xinyao [1 ]
Cheng, Irene [1 ]
机构
[1] Univ Alberta, Edmonton, AB T6G 2R3, Canada
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I | 2019年 / 11662卷
关键词
Filter parameter tuning; CNN; Denoising; BM3D; GPU; IMAGE; SPARSE; REPRESENTATIONS; ALGORITHM;
D O I
10.1007/978-3-030-27202-9_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel direction to improve the denoising quality of filtering-based denoising algorithms in real time by predicting the best filter parameter value using a Convolutional Neural Network (CNN). We take the use case of BM3D, the state-of-the-art filtering-based denoising algorithm, to demonstrate and validate our approach. We propose and train a simple, shallow CNN to predict in real time, the optimum filter parameter value, given the input noisy image. Each training example consists of a noisy input image (training data) and the filter parameter value that produces the best output (training label). Both qualitative and quantitative results using the widely used PSNR and SSIM metrics on the popular BSD68 dataset show that the CNN-guided BM3D outperforms the original, unguided BM3D across different noise levels. Thus, our proposed method is a CNN-based improvement on the original BM3D which uses a fixed, default parameter value for all images.
引用
收藏
页码:112 / 125
页数:14
相关论文
共 50 条
  • [1] CNN-BASED DENOISING OF TIME-OF-FLIGHT DEPTH IMAGES
    Bolsee, Quentin
    Munteanu, Adrian
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 510 - 514
  • [2] An efficient hardware implementation of CNN-based object trackers for real-time applications
    Al-Hussein A. El-Shafie
    Mohamed Zaki
    S. E. D. Habib
    Neural Computing and Applications, 2022, 34 : 19937 - 19952
  • [3] Digital Architecture for Real-Time CNN-based Face Detection for Video Processing
    Bhattarai, Smrity
    Madanayake, Arjuna
    Cintra, Renato J.
    Duffner, Stefan
    Garcia, Christophe
    2017 COGNITIVE COMMUNICATIONS FOR AEROSPACE APPLICATIONS WORKSHOP (CCAA), 2017,
  • [4] An efficient hardware implementation of CNN-based object trackers for real-time applications
    El-Shafie, Al-Hussein A.
    Zaki, Mohamed
    Habib, S. E. D.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22) : 19937 - 19952
  • [5] Real-time CNN-based Segmentation Architecture for Ball Detection in a Single View Setup
    Van Zandycke, Gabriel
    De Vleeschouwer, Christophe
    PROCEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON MULTIMEDIA CONTENT ANALYSIS IN SPORTS, MMSPORTS 2019, 2019, : 51 - 58
  • [6] CNN-based InSAR Denoising and Coherence Metric
    Mukherjee, Subhayan
    Zimmer, Aaron
    Kottayil, Navaneeth Kamballur
    Sun, Xinyao
    Ghuman, Parwant
    Cheng, Irene
    2018 IEEE SENSORS, 2018, : 808 - 811
  • [7] Real-time implementation and explainable AI analysis of delayless CNN-based selective fixed-filter active noise control
    Luo, Zhengding
    Shi, Dongyuan
    Ji, Junwei
    Shen, Xiaoyi
    Gan, Woon-Seng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 214
  • [8] A Real-Time Edge-Preserving Denoising Filter
    Reich, Simon
    Worgotter, Florentin
    Dellen, Babette
    VISAPP: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL 4: VISAPP, 2018, : 85 - 94
  • [9] On building a CNN-based multi-view smart camera for real-time object detection
    Bonnard, Jonathan
    Abdelouahab, Kamel
    Pelcat, Maxime
    Berry, Francois
    MICROPROCESSORS AND MICROSYSTEMS, 2020, 77
  • [10] Real-time CNN-based object detection and classification for outdoor surveillance images: daytime and thermal
    Zilkha, Meir
    Spanier, Assaf B.
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING IN DEFENSE APPLICATIONS, 2019, 11169