Easy and controlled synthesis of nitrogen-doped carbon

被引:47
作者
Choi, Chang Hyuck [1 ]
Park, Sung Hyeon [1 ]
Chung, Min Wook [2 ]
Woo, Seong Ihl [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTRICAL-CONDUCTIVITY; CHEMICAL-REDUCTION; MESOPOROUS CARBON; GRAPHITE OXIDE; NANOTUBES; GRAPHENE; CATALYSTS; ELECTROCATALYSTS; STORAGE; ROUTE;
D O I
10.1016/j.carbon.2012.12.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel synthesis of N-doped carbon with not only a high surface area (similar to 1000 m(2) g(-1)) but also with a controlled amount of N-doping is reported from the solvothermal reduction of hexachlorobenzene (HCB) and pentachloropyridine (PCP), without the emission of harmful byproducts. In the presence of metallic sodium as a reducing agent, the N-doping amount can be regulated up to 0.12 of N/C atomic ratio by simply altering the initial HCB and PCP ratios. The mechanism is proposed where the chlorine in the HCB and PCP is reacted with metallic sodium by producing NaCl, and the N-doped carbon is synthesized as the activated carbon edges of C5N and C-6 rings being bonded together. The surfaces of the prepared N-doped carbons are modified through heat-treatment and this dramatically improves the mechanical and electrical properties. The dominant doping phases of N are pyridinic-N and amide or amine groups; however, the amide or amine groups are eliminated and graphitic-N is newly generated through heat-treatment. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 58 条
[1]  
Badzian A, 2001, THIN SOLID FILMS
[2]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[3]  
Brigg D, 1996, PRACTICAL SURFACE AN
[4]   Effect of nitrogen doping on Raman spectra of multi-walled carbon nanotubes [J].
Bulusheva, L. G. ;
Okotrub, A. V. ;
Kinloch, I. A. ;
Asanov, I. P. ;
Kurenya, A. G. ;
Kudashov, A. G. ;
Chen, X. ;
Song, H. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (10) :1971-1974
[5]   Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries [J].
Bulusheva, L. G. ;
Okotrub, A. V. ;
Kurenya, A. G. ;
Zhang, Hongkun ;
Zhang, Huijuan ;
Chen, Xiaohong ;
Song, Huaihe .
CARBON, 2011, 49 (12) :4013-4023
[6]   Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Li, Hui-Hui ;
Yang, Jing-Jing ;
Wang, Zheng ;
Yao, Hong-Bin ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (01) :712-719
[7]   Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery [J].
Chen, Zhu ;
Yu, Aiping ;
Ahmed, Raihan ;
Wang, Haijiang ;
Li, Hui ;
Chen, Zhongwei .
ELECTROCHIMICA ACTA, 2012, 69 :295-300
[8]   Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications [J].
Chen, Zhu ;
Higgins, Drew ;
Tao, Haisheng ;
Hsu, Ryan S. ;
Chen, Zhongwei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49) :21008-21013
[9]   N-doped carbon prepared by pyrolysis of dicyandiamide with various MeCl2•xH2O (Me = Co, Fe, and Ni) composites: Effect of type and amount of metal seed on oxygen reduction reactions [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 119 :123-131
[10]   Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (24) :12107-12115