Use of Convolutional Neural Networks for Detection and Segmentation of Pulmonary Nodules in Computed Tomography Images

被引:0
作者
Saraiva, A. A. [2 ,6 ]
Lopes, Luciano [1 ]
Pedro, Pimentel [1 ]
Moura Sousa, Jose Vigno [1 ]
Fonseca Ferreira, N. M. [3 ,4 ]
Batista Neto, J. E. S. [6 ]
Soares, Salviano [3 ]
Valente, Antonio [2 ,5 ]
机构
[1] UESPI Univ State Piaui, Piripiri, Brazil
[2] Univ Tras Os Montes & Alto Douro, Vila Real, Portugal
[3] Coimbra Polytech, ISEC, Coimbra, Portugal
[4] Polytech Inst Porto, Knowledge Engn & Decis Support Res Ctr GECAD, Inst Engn, Porto, Portugal
[5] INESC TEC Technol & Sci, Porto, Portugal
[6] Univ Sao Paulo, Sao Carlos, Brazil
来源
BIODEVICES: PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 1: BIODEVICES, 2020 | 2020年
关键词
UNet; Segmentation; CT Scanner; Lung Nodes;
D O I
10.5220/0009178902920297
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a method capable of detecting and segmenting pulmonary nodules in clinical computed tomography images, using UNet convolutional neural network powered by The Lung Image Database Consortium image collection - LIDC-IDRI, that in the training process was submitted to different training tests, where for each of them, their hyper-parameters were modified so that the results could be collected from different media, getting quite satisfactory results in the segmentation task, highlighting the areas of interest almost perfectly, resulting in 91.61% on the IoU (Intersection over Union) metric.
引用
收藏
页码:292 / 297
页数:6
相关论文
共 50 条
  • [31] Three-dimensional automatic segmentation of pulmonary structures in computed tomography images
    Vera, Miguel
    Molina, Valentin
    Huerfano, Yoleidy
    Vera, Maria
    Del Mar, Atilio
    Salazar, Williams
    Pena, Armando
    Graterol-Rivas, Modesto
    Wilches-Duran, Sandra
    Chacon, Jose
    Rojas, Joselyn
    Garicano, Carlos
    Contreras-Velasquez, Julio
    Arias, Victor
    Torres, Maritza
    Prieto, Carem
    Rojas-Gomez, Diana
    Siguencia, Wilson
    Angarita, Lisse
    Ortiz, Rina
    Bermudez, Valmore
    REVISTA LATINOAMERICANA DE HIPERTENSION, 2015, 10 (04): : 85 - 90
  • [32] Tumor detection in MR images of regional convolutional neural networks
    Ari, Ali
    Hanbay, Davut
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2019, 34 (03): : 1396 - +
  • [33] A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images
    Lee, I-Cheng
    Tsai, Yung-Ping
    Lin, Yen-Cheng
    Chen, Ting-Chun
    Yen, Chia-Heng
    Chiu, Nai-Chi
    Hwang, Hsuen-En
    Liu, Chien-An
    Huang, Jia-Guan
    Lee, Rheun-Chuan
    Chao, Yee
    Ho, Shinn-Ying
    Huang, Yi-Hsiang
    CANCER IMAGING, 2024, 24 (01)
  • [34] A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images
    I-Cheng Lee
    Yung-Ping Tsai
    Yen-Cheng Lin
    Ting-Chun Chen
    Chia-Heng Yen
    Nai-Chi Chiu
    Hsuen-En Hwang
    Chien-An Liu
    Jia-Guan Huang
    Rheun-Chuan Lee
    Yee Chao
    Shinn-Ying Ho
    Yi-Hsiang Huang
    Cancer Imaging, 24
  • [35] Improving the segmentation of scanning probe microscope images using convolutional neural networks
    Farley, Steff
    Hodgkinson, Jo E. A.
    Gordon, Oliver M.
    Turner, Joanna
    Soltoggio, Andrea
    Moriarty, Philip J.
    Hunsicker, Eugenie
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [36] CHARACTERIZING ROBUSTNESS AND SENSITIVITY OF CONVOLUTIONAL NEURAL NETWORKS IN SEGMENTATION OF FLUORESCENCE MICROSCOPY IMAGES
    Chai, Xiaoqi
    Ba, Qinle
    Yang, Ge
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3838 - 3842
  • [37] Tailored Methods for Segmentation of Intravascular Ultrasound Images via Convolutional Neural Networks
    Bargsten, Lennart
    Riedl, Katharina A.
    Wissel, Tobias
    Brunner, Fabian J.
    Schaefers, Klaus
    Sprenger, Johanna
    Grass, Michael
    Seiffert, Moritz
    Blankenberg, Stefan
    Schlaefer, Alexander
    MEDICAL IMAGING 2021: ULTRASONIC IMAGING AND TOMOGRAPHY, 2021, 11602
  • [38] Detection and Segmentation of Rice Diseases Using Deep Convolutional Neural Networks
    Rai C.K.
    Pahuja R.
    SN Computer Science, 4 (5)
  • [39] Hybrid method for the detection of pulmonary nodules using positron emission tomography/computed tomography: a preliminary study
    Teramoto, Atsushi
    Fujita, Hiroshi
    Takahashi, Katsuaki
    Yamamuro, Osamu
    Tamaki, Tsuneo
    Nishio, Masami
    Kobayashi, Toshiki
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (01) : 59 - 69
  • [40] Machine learning with a convolutional neural network for segmentation of ophthalmological images
    Biswas, Hridoy
    Umbaugh, Scott E.
    COMPUTATIONAL IMAGING VI, 2021, 11731