A POSTERIORI ERROR ESTIMATOR FOR ADAPTIVE LOCAL BASIS FUNCTIONS TO SOLVE KOHN-SHAM DENSITY FUNCTIONAL THEORY

被引:9
作者
Kaye, Jason [1 ]
Lin, Lin [2 ,3 ]
Yang, Chao [3 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
关键词
Kohn-Sham density functional theory; a posteriori error estimator; adaptive local basis function; discontinuous Galerkin method; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD; ELECTRONIC-STRUCTURE CALCULATIONS; APPROXIMATIONS; PSEUDOPOTENTIALS;
D O I
10.4310/CMS.2015.v13.n7.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kohn-Sham density functional theory is one of the most widely used electronic structure theories. The recently developed adaptive local basis functions form an accurate and systematically improvable basis set for solving Kohn-Sham density functional theory using discontinuous Galerkin methods, requiring a small number of basis functions per atom. In this paper, we develop residual-based, a posteriori error estimates for the adaptive local basis approach, which can be used to guide non-uniform basis refinement for highly inhomogeneous systems such as surfaces and large molecules. The adaptive local basis functions are non-polynomial basis functions, and standard a posteriori error estimates for hp-refinement using polynomial basis functions do not directly apply. We generalize the error estimates for hp-refinement to non-polynomial basis functions. We demonstrate the practical use of the a posteriori error estimator in performing three-dimensional Kohn-Sham density functional theory calculations for quasi-2D aluminum surfaces and a single-layer graphene oxide system in water.
引用
收藏
页码:1741 / 1773
页数:33
相关论文
共 44 条
[1]   Muffin-tin orbitals of arbitrary order [J].
Andersen, OK ;
Saha-Dasgupta, T .
PHYSICAL REVIEW B, 2000, 62 (24) :16219-16222
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[4]   NONCONFORMING ELEMENTS IN FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I ;
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :863-875
[5]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[6]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[7]   Equilibrated residual error estimates are p-robust [J].
Braess, Dietrich ;
Pillwein, Veronika ;
Schoeberl, Joachim .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (13-14) :1189-1197
[8]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[9]   FINITE-DIFFERENCE-PSEUDOPOTENTIAL METHOD - ELECTRONIC-STRUCTURE CALCULATIONS WITHOUT A BASIS [J].
CHELIKOWSKY, JR ;
TROULLIER, N ;
SAAD, Y .
PHYSICAL REVIEW LETTERS, 1994, 72 (08) :1240-1243
[10]   ADAPTIVE FINITE ELEMENT APPROXIMATIONS FOR KOHN-SHAM MODELS [J].
Chen, Huajie ;
Dai, Xiaoying ;
Gong, Xingao ;
He, Lianhua ;
Zhou, Aihui .
MULTISCALE MODELING & SIMULATION, 2014, 12 (04) :1828-1869