The 2-center problem with obstacles

被引:22
作者
Halperin, D [1 ]
Sharir, M
Goldberg, K
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
基金
以色列科学基金会;
关键词
D O I
10.1006/jagm.2001.1194
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set S of n points in the plane and a set 0 of pairwise disjoint simple polygons with a total of m edges, we wish to find two congruent disks of smallest radius whose union covers S and whose centers lie outside the polygons in O (referred to as locational constraints in facility location theory). We present an algorithm to solve this problem in randomized expected time O(mlog(2)(mn)+mnlog(2)nlog(mn)). We also present an efficient approximation scheme that constructs, for a given epsilon > 0, two disks as above of radius at most (1+epsilon)r(*), where r(*) is the optimal radius, in time O(1/epsilonlog(1/epsilon)(mlog(2)m+nlog(2)n)) or in randomized expected time O(1/epsilonlog(1/epsilon)((m+nlogn)log(mn))). (C) 2002 Elsevier Science.
引用
收藏
页码:109 / 134
页数:26
相关论文
共 16 条
  • [1] COMPUTING A SEGMENT CENTER FOR A PLANAR POINT SET
    AGARWAL, PK
    EFRAT, A
    SHARIR, M
    TOLEDO, S
    [J]. JOURNAL OF ALGORITHMS, 1993, 15 (02) : 314 - 323
  • [2] More planar two-center algorithms
    Chan, TM
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 13 (03): : 189 - 198
  • [3] CHENG SW, 1999, P 15 ANN ACM S COMP, P227
  • [4] AN OPTIMAL-TIME ALGORITHM FOR SLOPE SELECTION
    COLE, R
    SALOWE, JS
    STEIGER, WL
    SZEMEREDI, E
    [J]. SIAM JOURNAL ON COMPUTING, 1989, 18 (04) : 792 - 810
  • [5] SLOWING DOWN SORTING NETWORKS TO OBTAIN FASTER SORTING ALGORITHMS
    COLE, R
    [J]. JOURNAL OF THE ACM, 1987, 34 (01) : 200 - 208
  • [6] CRAIG J, 1998, 3 WORKSH ALG FDN ROB, P133
  • [7] EPPSTEIN D, 1991, PROCEEDINGS - 32ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, P488, DOI 10.1109/SFCS.1991.185410
  • [8] Eppstein D, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P131
  • [9] HALPERIN D, 1999, UNPUB MINIMUM ENCLOS
  • [10] HANSEN P, 1995, FACILITY LOCATION SU, P43