Polynomial Cases for the Vertex Coloring Problem

被引:8
作者
Karthick, T. [1 ]
Maffray, Frederic [2 ]
Pastor, Lucas [3 ]
机构
[1] Indian Stat Inst, Chennai Ctr, Comp Sci Unit, Chennai 600029, Tamil Nadu, India
[2] Univ Grenoble, CNRS, Lab G SCOP, Grenoble, France
[3] Univ Grenoble, Lab G SCOP, Grenoble, France
关键词
Graph algorithms; Vertex coloring; Two forbidden induced subgraphs; P-5-free graphs; MODULAR DECOMPOSITION; K-COLORABILITY; GRAPHS;
D O I
10.1007/s00453-018-0457-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The computational complexity of the Vertex Coloring problem is known for all hereditary classes of graphs defined by forbidding two connected five-vertex induced subgraphs, except for seven cases. We prove the polynomial-time solvability of four of these problems: for (P5, dart)-free graphs, (P5, banner)-free graphs, (P5, bull)-free graphs, and (fork, bull)-free graphs.
引用
收藏
页码:1053 / 1074
页数:22
相关论文
共 34 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[2]   On algorithms for (P5,gem)-free graphs [J].
Bodlaender, HL ;
Brandstädt, A ;
Kratsch, D ;
Rao, M ;
Spinrad, J .
THEORETICAL COMPUTER SCIENCE, 2005, 349 (01) :2-21
[3]  
Brandstadt A., 1999, Graph classes: A survey
[4]   Determining the chromatic number of triangle-free 2P3-free graphs in polynomial time [J].
Broersma, Hajo ;
Golovach, Petr A. ;
Paulusma, Daniel ;
Song, Jian .
THEORETICAL COMPUTER SCIENCE, 2012, 423 :1-10
[5]  
Cameron K., ARXIV170400316
[6]   Recognizing Berge graphs [J].
Chudnovsky, M ;
Cornuéjols, G ;
Liu, XM ;
Seymour, P ;
Vuskovic, K .
COMBINATORICA, 2005, 25 (02) :143-186
[7]   The strong perfect graph theorem [J].
Chudnovsky, Maria ;
Robertson, Neil ;
Seymour, Paul ;
Thomas, Robin .
ANNALS OF MATHEMATICS, 2006, 164 (01) :51-229
[8]   BULL-FREE BERGE GRAPHS ARE PERFECT [J].
CHVATAL, V ;
SBIHI, N .
GRAPHS AND COMBINATORICS, 1987, 3 (02) :127-139
[9]   4 CLASSES OF PERFECTLY ORDERABLE GRAPHS [J].
CHVATAL, V ;
HOANG, CT ;
MAHADEV, NVR ;
DEWERRA, D .
JOURNAL OF GRAPH THEORY, 1987, 11 (04) :481-495
[10]  
Cournier A., 1994, Trees in Algebra and Programming - CAAP '94. 19th International Colloquium. Proceedings, P68, DOI 10.1007/BFb0017474