3D Nitrogen, Sulfur-Codoped Carbon Nanomaterial-Supported Cobalt Oxides with Polyhedron-Like Particles Grafted onto Graphene Layers as Highly Active Bicatalysts for Oxygen-Evolving Reactions

被引:43
作者
Huang, Xiaobo [1 ]
Wang, Jianqiang [2 ]
Bao, Hongliang [2 ]
Zhang, Xiangkun [1 ]
Huang, Yongmin [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Key Lab Specially Funct Polymer Mat & Related Tec, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, 2019 Jialuo Rd, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen electrode reactions; ZIF-67; 3D hierarchical porous structure; bicatalyst; carbon nanomaterials; METAL-ORGANIC FRAMEWORKS; DOPED POROUS CARBON; ONE-POT SYNTHESIS; REDUCTION REACTION; EVOLUTION REACTIONS; BIFUNCTIONAL ELECTROCATALYSTS; EFFICIENT ELECTROCATALYST; ENHANCED PERFORMANCE; ENERGY-STORAGE; BATTERIES;
D O I
10.1021/acsami.8b00504
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The extensive research and developments of highly efficient oxygen electrode electrocatalysts to get rid of the kinetic barriers for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are very important in energy conversion and storage devices. Especially, exploring nonprecious metal alternatives to replace traditional noble metal catalysts with high cost and poor durability is the paramount mission. In this paper, we utilize property-flexible ZIF-67 and sulfur-functionalized graphene oxide to obtain a cobalt, nitrogen, and sulfur codoped nanomaterial with 3D hierarchical porous structures, owing to their rich dopant species and good conductivity. The crosslinked structures of polyhedron particles throughout the whole carbon framework speeds up the mass transportation and charge-delivery processes during oxygen-evolving reactions. Also, by exploring the location and coordination type of sulfur dopants, we emphasize the effects of sulfone and sulfide functional groups anchored into the graphitic structure on enhancing the catalytic abilities for ORR and OER. To note, compared to the noble metal electrocatalysts, the best-performing CoO@Co3O4/NSG-650 (0.79 V) is 40 mV less active than the commercial Pt/C catalyst (0.83 V) for ORR and merely 10 mV behind IrO2 (1.68 V) for OER. Besides, the metric between ORR and OER difference for CoO@Co3O4/NSG-650 to evaluate its overall electrocatalytic activity is 0.90 V, surpassing 290 and 430 mV over Pt/C (1.19 V) and IrO2 (1.33 V). Comprehensively, the as-prepared CoO@Co3O4/NSG-650 indicates excellent bifunctional catalytic activities for ORR and OER, which shows great potential for replacing noble metal catalysts in the application of fuel cells and metal air batteries.
引用
收藏
页码:7180 / 7190
页数:11
相关论文
共 61 条
[1]   Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction [J].
Ai, Wei ;
Luo, Zhimin ;
Jiang, Jian ;
Zhu, Jianhui ;
Du, Zhuzhu ;
Fan, Zhanxi ;
Xie, Linghai ;
Zhang, Hua ;
Huang, Wei ;
Yu, Ting .
ADVANCED MATERIALS, 2014, 26 (35) :6186-+
[2]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[3]   Advanced Biomass-Derived Electrocatalysts for the Oxygen Reduction Reaction [J].
Borghei, Maryam ;
Lehtonen, Janika ;
Liu, Liang ;
Rojas, Orlando J. .
ADVANCED MATERIALS, 2018, 30 (24)
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[5]   Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions [J].
Chen, Binling ;
Li, Rong ;
Ma, Guiping ;
Gou, Xinglong ;
Zhu, Yanqiu ;
Xia, Yongde .
NANOSCALE, 2015, 7 (48) :20674-20684
[6]   From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis [J].
Chen, Yu-Zhen ;
Wang, Chengming ;
Wu, Zhen-Yu ;
Xiong, Yujie ;
Xu, Qiang ;
Yu, Shu-Hong ;
Jiang, Hai-Long .
ADVANCED MATERIALS, 2015, 27 (34) :5010-5016
[7]   A General and Extremely Simple Remote Approach toward Graphene Bulks with In Situ Multifunctionalization [J].
Cheng, Huhu ;
Ye, Minghui ;
Zhao, Fei ;
Hu, Chuangang ;
Zhao, Yang ;
Liang, Yuan ;
Chen, Nan ;
Chen, Shilv ;
Jiang, Lan ;
Qu, Liangti .
ADVANCED MATERIALS, 2016, 28 (17) :3305-3312
[8]  
Cui CH, 2013, NAT MATER, V12, P765, DOI [10.1038/NMAT3668, 10.1038/nmat3668]
[9]   Nanostructured transition metal nitrides for energy storage and fuel cells [J].
Dong, Shanmu ;
Chen, Xiao ;
Zhang, Xiaoying ;
Cui, Guanglei .
COORDINATION CHEMISTRY REVIEWS, 2013, 257 (13-14) :1946-1956
[10]   Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis [J].
Dou, Shuo ;
Tao, Li ;
Huo, Jia ;
Wang, Shuangyin ;
Dai, Liming .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1320-1326