Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae

被引:0
|
作者
Mosch, HU
Fink, GR
机构
[1] MIT, WHITEHEAD INST BIOMED RES, CAMBRIDGE, MA 02142 USA
[2] MIT, DEPT BIOL, CAMBRIDGE, MA 02142 USA
[3] UNIV GOTTINGEN, INST MICROBIOL, D-37077 GOTTINGEN, GERMANY
关键词
D O I
暂无
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from growth as single yeast form (YF) cells to a multicellular form consisting of filaments of pseudohyphal (PH) cells. Filamentous growth is regulated by an evolutionarily conserved signaling pathway that includes the small GTP-binding proteins Ras2p and Cdc42p, the protein kinases Ste20p, Ste11p and Ste7p, and the transcription factor Ste12p. Here, we designed a genetic screen for mutant strains defective for filamentous growth (dfg) to identify novel targets of the filamentation signaling pathway, and we thereby identified 16 different genes, CDC39, STE12, TEC1, WH13, NAB1, DBR1, CDC55, SRV2, TPM1, SPA2, BNI1, DFG5, DFG9, DFG10, BUD8 and DFG16, mutations that block filamentous growth. Phenotypic analysis of dfg mutant strains genetically dissects filamentous growth into the cellular processes of signal transduction, bud site selection, cell morphogenesis and invasive growth. Epistasis tests between dfg mutant alleles and dominant activated alleles of the RAS2 and STE11 genes, RAS2(Val19) and STE11-4, respectively, identify putative targets for the filamentation signaling pathway. Several of the genes described here have homologues in filamentous fungi, where they also regulate fungal development.
引用
收藏
页码:671 / 684
页数:14
相关论文
共 50 条
  • [41] Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28
    Edgington, NP
    Blacketer, MJ
    Bierwagen, TA
    Myers, AM
    MOLECULAR AND CELLULAR BIOLOGY, 1999, 19 (02) : 1369 - 1380
  • [42] Cloning of Candida albicans CaBEM1 and its role in filamentous growth of Saccharomyces cerevisiae
    Zhou, Z
    Liu, HP
    Chen, JY
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2002, 34 (05) : 553 - 559
  • [43] Characterization of industrial strains of Saccharomyces cerevisiae exhibiting filamentous growth induced by alcohols and nutrient deprivation
    Paula Cristina da Silva
    Jorge Horii
    Viviane Santos Miranda
    Heloísa Gallera Brunetto
    Sandra Regina Ceccato-Antonini
    World Journal of Microbiology and Biotechnology, 2007, 23 : 697 - 704
  • [44] DNA-REPLICATION AND MUTAGENESIS IN SACCHAROMYCES-CEREVISIAE
    ZUK, J
    MUTAGENESIS, 1987, 2 (04) : 314 - 314
  • [45] DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae
    Kunz, BA
    Ramachandran, K
    Vonarx, EJ
    GENETICS, 1998, 148 (04) : 1491 - 1505
  • [46] ULTRAVIOLET-LIGHT INDUCED MUTAGENESIS IN SACCHAROMYCES CEREVISIAE
    LAWRENCE, CW
    CHRISTENSEN, R
    JOURNAL OF SUPRAMOLECULAR STRUCTURE, 1978, : 91 - 91
  • [47] PETITE MUTAGENESIS BY ANTICANCER DRUGS IN SACCHAROMYCES-CEREVISIAE
    FERGUSON, LR
    TURNER, PM
    EUROPEAN JOURNAL OF CANCER & CLINICAL ONCOLOGY, 1988, 24 (04): : 591 - 596
  • [49] Filamentous Cells in Saccharomyces cerevisiae Are Resistant to Programmed Cell Death
    Cao, Yi
    Austriaco, Nicanor
    FASEB JOURNAL, 2011, 25
  • [50] Mutagenesis of the glucoamylase signal peptide of Saccharomyces diastaticus and functional analysis in Saccharomyces cerevisiae
    Lee, JW
    Kang, DO
    Kim, BY
    Oh, WK
    Mheen, TI
    Pyun, YR
    Ahn, JS
    FEMS MICROBIOLOGY LETTERS, 2000, 193 (01) : 7 - 11