Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae

被引:0
|
作者
Mosch, HU
Fink, GR
机构
[1] MIT, WHITEHEAD INST BIOMED RES, CAMBRIDGE, MA 02142 USA
[2] MIT, DEPT BIOL, CAMBRIDGE, MA 02142 USA
[3] UNIV GOTTINGEN, INST MICROBIOL, D-37077 GOTTINGEN, GERMANY
关键词
D O I
暂无
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from growth as single yeast form (YF) cells to a multicellular form consisting of filaments of pseudohyphal (PH) cells. Filamentous growth is regulated by an evolutionarily conserved signaling pathway that includes the small GTP-binding proteins Ras2p and Cdc42p, the protein kinases Ste20p, Ste11p and Ste7p, and the transcription factor Ste12p. Here, we designed a genetic screen for mutant strains defective for filamentous growth (dfg) to identify novel targets of the filamentation signaling pathway, and we thereby identified 16 different genes, CDC39, STE12, TEC1, WH13, NAB1, DBR1, CDC55, SRV2, TPM1, SPA2, BNI1, DFG5, DFG9, DFG10, BUD8 and DFG16, mutations that block filamentous growth. Phenotypic analysis of dfg mutant strains genetically dissects filamentous growth into the cellular processes of signal transduction, bud site selection, cell morphogenesis and invasive growth. Epistasis tests between dfg mutant alleles and dominant activated alleles of the RAS2 and STE11 genes, RAS2(Val19) and STE11-4, respectively, identify putative targets for the filamentation signaling pathway. Several of the genes described here have homologues in filamentous fungi, where they also regulate fungal development.
引用
收藏
页码:671 / 684
页数:14
相关论文
共 50 条
  • [31] EXCISION REPAIR AND MUTAGENESIS IN SACCHAROMYCES-CEREVISIAE
    KILBEY, B
    MUTAGENESIS, 1987, 2 (04) : 313 - 314
  • [32] Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae
    Chatterjee, Nimrat
    Pabla, Ritu
    Siede, Wolfram
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 431 (02) : 270 - 273
  • [33] A MODEL FOR UV MUTAGENESIS IN SACCHAROMYCES-CEREVISIAE
    SIEDE, W
    ECKARDT, F
    MUTATION RESEARCH, 1986, 164 (04): : 298 - 298
  • [34] Dissection of the functions of the Saccharomyces cerevisiae RAD6 postreplicative repair group in mutagenesis and UV sensitivity
    Cejka, P
    Vondrejs, V
    Storchová, Z
    GENETICS, 2001, 159 (03) : 953 - 963
  • [35] DUPLICATION CYCLE IN FILAMENTOUS FORMS OF SACCHAROMYCES-CEREVISIAE
    THOMPSON, PW
    WHEALS, AE
    JOURNAL OF GENERAL MICROBIOLOGY, 1981, 122 (JAN): : 151 - 154
  • [36] ETHIDIUM-BROMIDE MUTAGENESIS IN SACCHAROMYCES-CEREVISIAE - MODULATION BY GROWTH MEDIUM COMPONENTS
    GARDELLA, RS
    MACQUILLAN, AM
    MUTATION RESEARCH, 1977, 46 (04): : 269 - 284
  • [37] Characterization of industrial strains of Saccharomyces cerevisiae exhibiting filamentous growth induced by alcohols and nutrient deprivation
    da Silva, Paula Cristina
    Horii, Jorge
    Miranda, Viviane Santos
    Brunetto, Heloisa Gallera
    Ceccato-Antonini, Sandra Regina
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2007, 23 (05): : 697 - 704
  • [38] Dysfunctional Mitochondria Modulate cAMP-PKA Signaling and Filamentous and Invasive Growth of Saccharomyces cerevisiae
    Aun, Anu
    Tamm, Tiina
    Sedman, Juhan
    GENETICS, 2013, 193 (02) : 467 - 481
  • [39] Variation in Filamentous Growth and Response to Quorum-Sensing Compounds in Environmental Isolates of Saccharomyces cerevisiae
    Lenhart, B. Adam
    Meeks, Brianna
    Murphy, Helen A.
    G3-GENES GENOMES GENETICS, 2019, 9 (05): : 1533 - 1544
  • [40] Filamentous growth of the budding yeast Saccharomyces cerevisiae induced by overexpression of the WHI2 gene
    Radcliffe, PA
    Binley, KM
    Trevethick, J
    Hall, M
    Sudbery, PE
    MICROBIOLOGY-UK, 1997, 143 : 1867 - 1876