Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae

被引:0
|
作者
Mosch, HU
Fink, GR
机构
[1] MIT, WHITEHEAD INST BIOMED RES, CAMBRIDGE, MA 02142 USA
[2] MIT, DEPT BIOL, CAMBRIDGE, MA 02142 USA
[3] UNIV GOTTINGEN, INST MICROBIOL, D-37077 GOTTINGEN, GERMANY
关键词
D O I
暂无
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from growth as single yeast form (YF) cells to a multicellular form consisting of filaments of pseudohyphal (PH) cells. Filamentous growth is regulated by an evolutionarily conserved signaling pathway that includes the small GTP-binding proteins Ras2p and Cdc42p, the protein kinases Ste20p, Ste11p and Ste7p, and the transcription factor Ste12p. Here, we designed a genetic screen for mutant strains defective for filamentous growth (dfg) to identify novel targets of the filamentation signaling pathway, and we thereby identified 16 different genes, CDC39, STE12, TEC1, WH13, NAB1, DBR1, CDC55, SRV2, TPM1, SPA2, BNI1, DFG5, DFG9, DFG10, BUD8 and DFG16, mutations that block filamentous growth. Phenotypic analysis of dfg mutant strains genetically dissects filamentous growth into the cellular processes of signal transduction, bud site selection, cell morphogenesis and invasive growth. Epistasis tests between dfg mutant alleles and dominant activated alleles of the RAS2 and STE11 genes, RAS2(Val19) and STE11-4, respectively, identify putative targets for the filamentation signaling pathway. Several of the genes described here have homologues in filamentous fungi, where they also regulate fungal development.
引用
收藏
页码:671 / 684
页数:14
相关论文
共 50 条
  • [1] SHUTTLE MUTAGENESIS - A METHOD OF TRANSPOSON MUTAGENESIS FOR SACCHAROMYCES-CEREVISIAE
    SEIFERT, HS
    CHEN, EY
    SO, M
    HEFFRON, F
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (03) : 735 - 739
  • [2] Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylos
    Ni, Haiying
    Laplaza, Jose M.
    Jeffries, Thomas W.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (07) : 2061 - 2066
  • [3] Filamentous growth in Saccharomyces cerevisiae
    Ceccato-Antonini, SR
    Sudbery, PE
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2004, 35 (03) : 173 - 181
  • [4] Genetic analysis of azole resistance by transposon mutagenesis in Saccharomyces cerevisiae
    Kontoyiannis, DP
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1999, 43 (11) : 2731 - 2735
  • [5] Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae
    Takahashi T.
    Shimoi H.
    Ito K.
    Molecular Genetics and Genomics, 2001, 265 (6) : 1112 - 1119
  • [6] Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae
    Takahashi, T
    Shimoi, H
    Ito, K
    MOLECULAR GENETICS AND GENOMICS, 2001, 265 (06) : 1112 - 1119
  • [7] Acivicin induce filamentous growth of Saccharomyces cerevisiae
    Miyake, T
    Sammoto, H
    Ono, B
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2003, 67 (10) : 2283 - 2285
  • [8] Filamentous growth of Saccharomyces cerevisiae is regulated by manganese
    Asleson, CM
    Asleson, JC
    Malandra, E
    Johnston, S
    Berman, J
    FUNGAL GENETICS AND BIOLOGY, 2000, 30 (02) : 155 - 162
  • [9] Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae
    Hyun-Soo Kim
    Na-Rae Kim
    Jungwoo Yang
    Wonja Choi
    Applied Microbiology and Biotechnology, 2011, 91 : 1159 - 1172
  • [10] Identification of novel genes responsible for ethanol and/or thermotolerance by transposon mutagenesis in Saccharomyces cerevisiae
    Kim, Hyun-Soo
    Kim, Na-Rae
    Yang, Jungwoo
    Choi, Wonja
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 91 (04) : 1159 - 1172