The Robustness of Generalized Estimating Equations for Association Tests in Extended Family Data

被引:7
作者
Suktitipat, Bhoom [1 ,3 ,4 ]
Mathias, Rasika A. [2 ]
Vaidya, Dhananjay [2 ]
Yanek, Lisa R. [2 ]
Young, J. Hunter [2 ]
Becker, Lewis C. [2 ]
Becker, Diane M. [2 ]
Wilson, Alexander F. [1 ]
Fallin, M. Daniele [2 ,3 ]
机构
[1] NHGRI, Genometr Sect, Inherited Dis Res Branch, NIH, Baltimore, MD USA
[2] Johns Hopkins Med Inst, Dept Med, Baltimore, MD 21205 USA
[3] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[4] Mahidol Univ, Fac Med, Siriraj Hosp, Dept Biochem, Bangkok 10700, Thailand
基金
美国国家卫生研究院;
关键词
Generalized estimating equation; Variance components analysis; Family-based association study; Genome-wide scan; LONGITUDINAL DATA-ANALYSIS; MODEL; PHENOTYPE;
D O I
10.1159/000341636
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Variance components analysis (VCA), the traditional method for handling correlations within families in genetic association studies, is computationally intensive for genome-wide analyses, and the computational burden of VCA increases with family size and the number of genetic markers. Alternative approaches that do not require the computation of familial correlations are preferable, provided that they do not inflate type I error or decrease power. We performed a simulation study to evaluate practical alternatives to VCA that use regression with generalized estimating equations (GEE) in extended family data. We compared the properties of linear regression with GEE applied to an entire extended family structure (GEE-EXT) and GEE applied to nuclear family structures split from these extended families (GEE-SPL) to variance components likelihood-based methods (FastAssoc). GEE-EXT was evaluated with and without robust variance estimators to estimate the standard errors. We observed similar average type I error rates from GEE-EXT and FastAssoc compared to GEE-SPL. Type I error rates for the GEE-EXT method with a robust variance estimator were marginally higher than the nominal rate when the minor allele frequency (MAF) was <0.1, but were close to the nominal rate when the MAF was >= 0.2. All methods gave consistent effect estimates and had similar power. In summary, the GEE framework with the robust variance estimator, the computationally fastest and least data management-intensive approach, appears to work well in extended families and thus provides a reasonable alternative to full variance components approaches for extended pedigrees in a genome-wide association study setting. Copyright (C) 2012 S. Karger AG, Basel
引用
收藏
页码:17 / 26
页数:10
相关论文
共 21 条
[1]   Merlin-rapid analysis of dense genetic maps using sparse gene flow trees [J].
Abecasis, GR ;
Cherny, SS ;
Cookson, WO ;
Cardon, LR .
NATURE GENETICS, 2002, 30 (01) :97-101
[2]   Genomewide rapid association using mixed model and regression: A fast and simple method for genomewide pedigree-based quantitative trait loci association analysis [J].
Aulchenko, Yurii S. ;
de Koning, Dirk-Jan ;
Haley, Chris .
GENETICS, 2007, 177 (01) :577-585
[3]   Family-based association tests for genomewide association scans [J].
Chen, Wei-Min ;
Abecasis, Goncalo R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) :913-926
[4]   The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports [J].
Cupples, L. Adrienne ;
Arruda, Heather T. ;
Benjamin, Emelia J. ;
D'Agostino, Ralph B., Sr. ;
Demissie, Serkalem ;
DeStefano, Anita L. ;
Dupuis, Josee ;
Falls, Kathleen M. ;
Fox, Caroline S. ;
Gottlieb, Daniel J. ;
Govindaraju, Diddahally R. ;
Guo, Chao-Yu ;
Heard-Costa, Nancy L. ;
Hwang, Shih-Jen ;
Kathiresan, Sekar ;
Kiel, Douglas P. ;
Laramie, Jason M. ;
Larson, Martin G. ;
Levy, Daniel ;
Liu, Chun-Yu ;
Lunetta, Kathryn L. ;
Mailman, Matthew D. ;
Manning, Alisa K. ;
Meigs, James B. ;
Murabito, Joanne M. ;
Newton-Cheh, Christopher ;
O'Connor, George T. ;
O'Donnell, Christopher J. ;
Pandey, Mona ;
Seshadri, Sudha ;
Vasan, Ramachandran S. ;
Wang, Zhen Y. ;
Wilk, Jemma B. ;
Wolf, Philip A. ;
Yang, Qiong ;
Atwood, Larry D. .
BMC MEDICAL GENETICS, 2007, 8
[5]   The family based association test method: strategies for studying general genotype-phenotype associations (Reprinted from European Journal of Human Genetics, Vol 9 pgs 301-306, 2001) [J].
Horvath, Steve ;
Xu, Xin ;
Laird, Nan M. .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 :S59-S62
[6]  
Huber PJ, 1967, P 5 BERK S MATH STAT, P221
[7]   Efficient control of population structure in model organism association mapping [J].
Kang, Hyun Min ;
Zaitlen, Noah A. ;
Wade, Claire M. ;
Kirby, Andrew ;
Heckerman, David ;
Daly, Mark J. ;
Eskin, Eleazar .
GENETICS, 2008, 178 (03) :1709-1723
[8]   Variance component model to account for sample structure in genome-wide association studies [J].
Kang, Hyun Min ;
Sul, Jae Hoon ;
Service, Susan K. ;
Zaitlen, Noah A. ;
Kong, Sit-yee ;
Freimer, Nelson B. ;
Sabatti, Chiara ;
Eskin, Eleazar .
NATURE GENETICS, 2010, 42 (04) :348-U110
[9]  
Kraja Aldi T, 2009, BMC Proc, V3 Suppl 7, pS4
[10]   PBAT: Tools for family-based association studies [J].
Lange, C ;
DeMeo, D ;
Silverman, EK ;
Weiss, ST ;
Laird, NM .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 74 (02) :367-369