Umbilical torus bifurcations in Hamiltonian systems

被引:20
作者
Broer, HW
Hanssmann, H
You, JG
机构
[1] Univ Groningen, Inst Wiskunde & Informat, NL-9747 AC Groningen, Netherlands
[2] Rhein Westfal TH Aachen, Inst Reine & Angew Math, D-52056 Aachen, Germany
[3] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
Hamiltonian dynamical system; KAM theory; lower dimensional torus; multiparameter bifurcations; singularity theory; umbilical catastrophe; gyrostat;
D O I
10.1016/j.jde.2005.06.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider perturbations of integrable Hamiltonian systems in the neighbourhood of normally umbilic invariant tori. These lower dimensional tori do not satisfy the usual non-degeneracy conditions that would yield persistence by an adaption of KAM theory, and there are indeed regions in parameter space with no surviving torus. We assume appropriate transversality conditions to hold so that the tori in the unperturbed system bifurcate according to a (generalised) umbilical catastrophe. Combining techniques of KAM theory and singularity theory we show that such bifurcation scenarios of invariant tori survive the perturbation on large Cantor sets. Applications to gyrostat dynamics are pointed out. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:233 / 262
页数:30
相关论文
共 46 条
[1]  
Arnold V. I., 1988, DYNAMICAL SYSTEMS
[2]  
Arnold V. I., 1985, Singularities of Differential Maps, V1
[3]  
ARNOLD VI, 1993, DYNAMICAL SYSTEMS, V6
[4]  
BAKHTIN VI, 1991, DOKL AKAD NAUK BELAR, V35, P398
[5]  
BRAAKSMA BLJ, 1990, MEM AM MATH SOC, V83, P83
[6]   ON A QUASI-PERIODIC HOPF-BIFURCATION [J].
BRAAKSMA, BLJ ;
BROER, HW .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1987, 4 (02) :115-168
[7]  
Brocker T., 1975, DIFFERENTIABLE GERMS, DOI 10.1017/cbo9781107325418
[8]   Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms [J].
Broer, H ;
Roussarie, R ;
Simo, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 :1147-1172
[9]  
BROER H, 1996, LECT NOTES MATH, V1645
[10]   A NORMALLY ELLIPTIC HAMILTONIAN BIFURCATION [J].
BROER, HW ;
CHOW, SN ;
KIM, Y ;
VEGTER, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (03) :389-432