Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems

被引:120
作者
Hou, Xuanji [1 ]
You, Jiangong [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
ROTATION NUMBER; SPECTRUM; SL(2;
D O I
10.1007/s00222-012-0379-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that a quasi-periodic linear differential equation in sl(2,a"e) with two frequencies (alpha,1) is almost reducible provided that the coefficients are analytic and close to a constant. In the case that alpha is Diophantine we get the non-perturbative reducibility. We also obtain the reducibility and the rotations reducibility for an arbitrary irrational alpha under some assumption on the rotation number and give some applications for Schrodinger operators. Our proof is a generalized KAM type iteration adapted to all irrational alpha.
引用
收藏
页码:209 / 260
页数:52
相关论文
共 30 条
[1]  
Amor SH, 2009, COMMUN MATH PHYS, V287, P565, DOI 10.1007/s00220-008-0688-x
[2]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[3]  
Avila A, 2010, J EUR MATH SOC, V12, P93
[4]  
Avila A., 2009, ARXIV09053902MATHDS
[5]   Reducibility or nonuniform hyperbolicity for quasiperiodic Schrodinger cocycles [J].
Avila, Artur ;
Krikorian, Raphael .
ANNALS OF MATHEMATICS, 2006, 164 (03) :911-940
[6]  
Avila A, 2011, GEOM FUNCT ANAL, V21, P1001, DOI 10.1007/s00039-011-0135-6
[7]   DENSITY OF POSITIVE LYAPUNOV EXPONENTS FOR QUASIPERIODIC SL(2, R)-COCYCLES IN ARBITRARY DIMENSION [J].
Avila, Artur .
JOURNAL OF MODERN DYNAMICS, 2009, 3 (04) :631-636
[8]  
Bogoljubov N., 1976, Methods of AcceleratedConvergence in Nonlinear Mechanics
[9]   On the spectrum of lattice Schrodinger operators with deterministic potential (II) [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1) :221-254
[10]   Absolutely continuous spectrum for 1D quasiperiodic operators [J].
Bourgain, J ;
Jitomirskaya, S .
INVENTIONES MATHEMATICAE, 2002, 148 (03) :453-463