Construction and analysis of Quaternion fractal set in a Simplex space

被引:0
|
作者
Yu, H [1 ]
Zhu, WY [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Peoples R China
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With our work, we take use of escape-time algorithm to construct a series of M-J sets and make an estimate of the boundary of the M set of the Quaternion based on the characteristics of Quaternion in a high dimensional dynamic space. We calculated the corresponding relationship between 4-D Bannach space & 3-D Euclid space through projection transform in Simplex coordinate system and use that relationship to get the mapping of the M-J set of Quaternion in a 3-D space. Our effort provided a constructive attempt and glimpse at the research & development of fractal theory in the multidimensional dynamic space.
引用
收藏
页码:269 / 271
页数:3
相关论文
共 50 条
  • [41] CONSTRUCTION OF FRACTAL SURFACES
    Navascues, M. A.
    Mohapatra, R. N.
    Akittar, M. N.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (02)
  • [42] Quaternion-based Salient Region Detection Using Scale Space Analysis
    Abkenar, Masoumeh Rezaei
    Ahmad, M. Omair
    2015 SIGNAL PROCESSING AND INTELLIGENT SYSTEMS CONFERENCE (SPIS), 2015, : 78 - 82
  • [43] Quaternion Analysis of a Direct Matrix Converter Based on Space-Vector Modulation
    Nakamura, Kazuo
    Zhang, Yifan
    Onchi, Takumi
    Idei, Hiroshi
    Hasegawa, Makoto
    Tokunaga, Kazutoshi
    Hanada, Kazuaki
    Mitarai, Osamu
    Kawasaki, Shoji
    Higashijima, Aki
    Nagata, Takahiro
    Shimabukuro, Shun
    PLASMA AND FUSION RESEARCH, 2021, 16 : 1 - 5
  • [44] Quaternion frames and fractal surface as tools to control orientation of a spacecraft
    Yefremov, Alexander P.
    ACTA ASTRONAUTICA, 2016, 129 : 174 - 178
  • [45] Multiresolution analysis of LP space on compact set
    Li, BZ
    Wang, HY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) : 245 - 256
  • [46] THE ANALYSIS OF ADDITIVE SET FUNCTIONS IN EUCLIDEAN SPACE
    ROGERS, CA
    TAYLOR, SJ
    ACTA MATHEMATICA, 1959, 101 (3-4) : 273 - 302
  • [47] THE GEOMETRY OF THE COMPLEMENT OF A FRACTAL SET
    TRICOT, C
    PHYSICS LETTERS A, 1986, 114 (8-9) : 430 - 434
  • [48] Turbulence on a Fractal Fourier Set
    Lanotte, Alessandra S.
    Benzi, Roberto
    Malapaka, Shiva K.
    Toschi, Federico
    Biferale, Luca
    PHYSICAL REVIEW LETTERS, 2015, 115 (26)
  • [49] Fractal Dimension and the Cantor Set
    Shirali, Shailesh A.
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2014, 19 (11): : 1000 - 1004
  • [50] An absorbing fractal film set
    Li, Y
    He, DR
    THIN SOLID FILMS, 2000, 375 (1-2) : 188 - 191