Quasi-interpolation for analysis-suitable T-splines

被引:5
作者
Kang, Hongmei [1 ]
Yong, Zhiguo [1 ]
Li, Xin [2 ]
机构
[1] Soochow Univ, Sch Math Sci, 1 Shizi Rd, Suzhou 215006, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-interpolation; Quasi-interpolants; Marsden?s identity; Analysis-suitable T-splines; SURFACE RECONSTRUCTION; ISOGEOMETRIC ANALYSIS; LINEAR INDEPENDENCE; POLYNOMIAL SPLINES; LOCAL REFINEMENT; NURBS;
D O I
10.1016/j.cagd.2022.102147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a novel local approximation method for analysis-suitable T-spline (AS T-spline) spaces via quasi-interpolation. The quasi-interpolants are defined as linear combination of the approximated function's values at appropriately chosen points. Benefited from the inherent nice properties of AS T-splines, the proposed quasi-interpolants can reproduce polynomials up to the same degree of AS T-spline spaces and can provide optimal approximation order. Some numerical examples of specific quasi-interpolants for bi-cubic AS T-splines are investigated to show the stability and efficiency. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Three recipes for quasi-interpolation with cubic Powell-Sabin splines [J].
Groselj, Jan ;
Speleers, Hendrik .
COMPUTER AIDED GEOMETRIC DESIGN, 2018, 67 :47-70
[42]   Hybrid-degree weighted T-splines and their application in isogeometric analysis [J].
Liu, Lei ;
Casquero, Hugo ;
Gomez, Hector ;
Zhang, Yongjie Jessica .
COMPUTERS & FLUIDS, 2016, 141 :42-53
[43]   Modified T-splines [J].
Kang, Hongmei ;
Chen, Falai ;
Deng, Jiansong .
COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (09) :827-843
[44]   Parallel isogeometric boundary element analysis with T-splines on CUDA [J].
Peres, M. A. ;
Sanches, G. ;
Paiva, A. ;
Pagliosa, P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 432
[45]   Multilevel quasi-interpolation [J].
Franz, Tino ;
Wendland, Holger .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (05) :2934-2964
[46]   Isogeometric boundary element analysis using unstructured T-splines [J].
Scott, M. A. ;
Simpson, R. N. ;
Evans, J. A. ;
Lipton, S. ;
Bordas, S. P. A. ;
Hughes, T. J. R. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 254 :197-221
[47]   On the approximation power of generalized T-splines [J].
Bracco, Cesare ;
Cho, Durkbin ;
Dagnino, Catterina ;
Kim, Tae-wan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 :423-438
[48]   Adaptive IGAFEM with optimal convergence rates: T-splines [J].
Gantner, Gregor ;
Praetorius, Dirk .
COMPUTER AIDED GEOMETRIC DESIGN, 2020, 81
[49]   T-splines and T-NURCCs [J].
Sederberg, TN ;
Zheng, JM ;
Bakenov, A ;
Nasri, A .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :477-484
[50]   Characterization of T-splines with reduced continuity order on T-meshes [J].
Buffa, A. ;
Cho, D. ;
Kumar, M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 201 :112-126