Quasi-interpolation for analysis-suitable T-splines

被引:4
作者
Kang, Hongmei [1 ]
Yong, Zhiguo [1 ]
Li, Xin [2 ]
机构
[1] Soochow Univ, Sch Math Sci, 1 Shizi Rd, Suzhou 215006, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-interpolation; Quasi-interpolants; Marsden?s identity; Analysis-suitable T-splines; SURFACE RECONSTRUCTION; ISOGEOMETRIC ANALYSIS; LINEAR INDEPENDENCE; POLYNOMIAL SPLINES; LOCAL REFINEMENT; NURBS;
D O I
10.1016/j.cagd.2022.102147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a novel local approximation method for analysis-suitable T-spline (AS T-spline) spaces via quasi-interpolation. The quasi-interpolants are defined as linear combination of the approximated function's values at appropriately chosen points. Benefited from the inherent nice properties of AS T-splines, the proposed quasi-interpolants can reproduce polynomials up to the same degree of AS T-spline spaces and can provide optimal approximation order. Some numerical examples of specific quasi-interpolants for bi-cubic AS T-splines are investigated to show the stability and efficiency. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Quasi-interpolation projectors for box splines
    Lyche, Tom
    Manni, Carla
    Sablonniere, Paul
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (02) : 416 - 429
  • [22] Quasi-interpolation in isogeometric analysis based on generalized B-splines
    Costantini, Paolo
    Manni, Carla
    Pelosi, Francesca
    Sampoli, M. Lucia
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (08) : 656 - 668
  • [23] Quasi-interpolation by splines on the uniform knot sets
    Leetma, E.
    Vainikko, G.
    MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (01) : 107 - 120
  • [24] Truncated T-splines: Fundamentals and methods
    Wei, Xiaodong
    Zhang, Yongjie
    Liu, Lei
    Hughes, Thomas J. R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 349 - 372
  • [25] de Boor-suitable (DS) T-splines
    Zhang, Yang
    Pataranutaporn, Visit
    Goldman, Ron
    GRAPHICAL MODELS, 2018, 97 : 40 - 49
  • [26] Adaptive refinement of hierarchical T-splines
    Chen, L.
    de Borst, R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 220 - 245
  • [27] GLOBALLY STRUCTURED THREE-DIMENSIONAL ANALYSIS-SUITABLE T-SPLINES: DEFINITION, LINEAR INDEPENDENCE AND m-GRADED LOCAL REFINEMENT
    Morgenstern, Philipp
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2163 - 2186
  • [28] Locally Refined T-splines
    Chen, L.
    de Borst, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (06) : 637 - 659
  • [29] QUASI-INTERPOLATION BY THIN-PLATE SPLINES ON A SQUARE
    BEATSON, RK
    LIGHT, WA
    CONSTRUCTIVE APPROXIMATION, 1993, 9 (04) : 407 - 433
  • [30] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263