Identification of postoperative complications using electronic health record data and machine learning

被引:19
作者
Bronsert, Michael [1 ,2 ]
Singh, Abhinav B. [2 ]
Henderson, William G. [1 ,2 ,3 ]
Hammermeister, Karl [1 ,2 ,4 ]
Meguid, Robert A. [1 ,2 ]
Colborn, Kathryn L. [3 ]
机构
[1] Univ Colorado, Adult & Child Consortium Hlth Outcomes Res & Deli, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Colorado, Surg Outcomes & Appl Res Program, Dept Surg, Sch Med, Aurora, CO 80045 USA
[3] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Anschutz Med Campus, Aurora, CO 80045 USA
[4] Univ Colorado, Sch Med, Dept Cardiol, Anschutz Med Campus, Aurora, CO 80045 USA
基金
美国医疗保健研究与质量局;
关键词
NSQIP; Postoperative complications; Elastic-net; Machine learning; URINARY-TRACT-INFECTION; SURVEILLANCE; REGULARIZATION; ACCURACY; QUALITY;
D O I
10.1016/j.amjsurg.2019.10.009
中图分类号
R61 [外科手术学];
学科分类号
摘要
Background: Using the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) complication status of patients who underwent an operation at the University of Colorado Hospital, we developed a machine learning algorithm for identifying patients with one or more complications using data from the electronic health record (EHR). Methods: We used an elastic-net model to estimate regression coefficients and carry out variable selection. International classification of disease codes (ICD-9), common procedural terminology (CPT) codes, medications, and CPT-specific complication event rate were included as predictors. Results: Of 6840 patients, 922 (13.5%) had at least one of the 18 complications tracked by NSQIP. The model achieved 88% specificity, 83% sensitivity, 97% negative predictive value, 52% positive predictive value, and an area under the curve of 0.93. Conclusions: Using machine learning on EHR postoperative data linked to NSQIP outcomes data, a model with 163 predictors from the EHR identi fied complications well at our institution. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 31 条
[1]   Natural Language Processing for Real-Time Catheter-Associated Urinary Tract Infection Surveillance: Results of a Pilot Implementation Trial [J].
Branch-Elliman, Westyn ;
Strymish, Judith ;
Kudesia, Valmeek ;
Rosen, Amy K. ;
Gupta, Kalpana .
INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2015, 36 (09) :1004-1010
[2]   Using clinical variables to guide surgical site infection detection: A novel surveillance strategy [J].
Branch-Elliman, Westyn ;
Strymish, Judith ;
Itani, Kamal M. F. ;
Gupta, Kalpana .
AMERICAN JOURNAL OF INFECTION CONTROL, 2014, 42 (12) :1291-1295
[3]   An Electronic Catheter-Associated Urinary Tract Infection Surveillance Tool [J].
Choudhuri, Julie A. ;
Pergamit, Ronald F. ;
Chan, Jeannie D. ;
Schreuder, Astrid B. ;
McNamara, Elizabeth ;
Lynch, John B. ;
Dellit, Timothy H. .
INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2011, 32 (08) :757-762
[4]   Identification of urinary tract infections using electronic health record data [J].
Colborn, Kathryn L. ;
Bronsert, Michael ;
Hammermeister, Karl ;
Henderson, William G. ;
Singh, Abhinav B. ;
Meguid, Robert A. .
AMERICAN JOURNAL OF INFECTION CONTROL, 2019, 47 (04) :371-375
[5]   Identification of surgical site infections using electronic health record data [J].
Colborn, Kathryn L. ;
Bronsert, Michael ;
Amioka, Elise ;
Hammermeister, Karl ;
Henderson, William G. ;
Meguid, Robert .
AMERICAN JOURNAL OF INFECTION CONTROL, 2018, 46 (11) :1230-1235
[6]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1136/bmj.g7594]
[7]  
Daley J, 1997, J AM COLL SURGEONS, V185, P328, DOI 10.1016/S1072-7515(97)00090-2
[8]   Exploring the Frontier of Electronic Health Record Surveillance The Case of Postoperative Complications [J].
FitzHenry, Fern ;
Murff, Harvey J. ;
Matheny, Michael E. ;
Gentry, Nancy ;
Fielstein, Elliot M. ;
Brown, Steven H. ;
Reeves, Ruth M. ;
Aronsky, Dominik ;
Elkin, Peter L. ;
Messina, Vincent P. ;
Speroff, Theodore .
MEDICAL CARE, 2013, 51 (06) :509-516
[9]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[10]   Accuracy of Administrative Code Data for the Surveillance of Healthcare-Associated Infections: A Systematic Review and Meta-Analysis [J].
Goto, Michihiko ;
Ohl, Michael E. ;
Schweizer, Marin L. ;
Perencevich, Eli N. .
CLINICAL INFECTIOUS DISEASES, 2014, 58 (05) :688-696