Comparison between the mortar element method and the polynomial interpolation method to model movement in the finite element method

被引:15
作者
Shi, Xiaodong [1 ]
Le Menach, Yvonnick [1 ]
Ducreux, Jean-Pierre [2 ]
Piriou, Francis [1 ]
机构
[1] Univ Sci & Technol Lille 1, L2EP, F-59655 Villeneuve Dascq, France
[2] Elect France, EDF R&D, F-92141 Clamart, France
关键词
electrical machines; finite-element method (FEM); scalar formulation;
D O I
10.1109/TMAG.2007.915840
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Numerous methods are developed to take into account the movement in electrical machines. In this paper, two methods are compared. The first one studies the mortar element method and the second is based on the polynomial interpolation. To solve the Maxwell equation, we used the scalar potential formulation. We will study the numerical behavior of the two methods and apply to a variable reluctance machine.
引用
收藏
页码:1314 / 1317
页数:4
相关论文
共 50 条
[31]   Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method [J].
Yuan, Si ;
Du, Yan ;
Xing, Qin-yan ;
Ye, Kang-sheng .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2014, 35 (10) :1223-1232
[32]   Simulation of directional drilling by dynamic finite element method [J].
Jung, Tae Joon ;
Jeong, Yeon Hwi ;
Shin, Younggy .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (07) :3239-3250
[33]   A Comparison of Fourier Spectral Iterative Perturbation Method and Finite Element Method in Solving Phase-Field Equilibrium Equations [J].
Song, Pengcheng ;
Yang, Tiannan ;
Ji, Yanzhou ;
Wang, Zhuo ;
Yang, Zhigang ;
Chen, Longqing ;
Chen, Lei .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (05) :1325-1349
[34]   He's Homotopy Perturbation Method for Two-Dimensional Heat Conduction Equation: Comparison with Finite Element Method [J].
Jalaal, M. ;
Ganji, D. ;
Mohammadi, F. .
HEAT TRANSFER-ASIAN RESEARCH, 2010, 39 (04) :232-245
[35]   A Rigorous Code Verification Process of the Domain Decomposition Method in a Finite Element Method for Electromagnetics [J].
Amor-Martin, Adrian ;
Garcia-Castillo, Luis E. ;
Toth, Laszlo Levente ;
Floch, Oliver ;
Dyczij-Edlinger, Romanus .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2024, 72 (01) :100-109
[36]   Combination of beam propagation method and finite element method for optical beam propagation analysis [J].
Yoneta, S ;
Koshiba, M ;
Tsuji, Y .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (11) :2398-2404
[37]   Analyzing of a Soil Model Using the Finite Element Method for Simulation of Soil Resistivity Measurement [J].
Jesenik, Marko ;
Hamler, Anton ;
Trlep, Mladen .
IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (07)
[38]   Perturbation Finite Element Method for Magnetic Model Refinement of Air Gaps and Leakage Fluxes [J].
Dular, Patrick ;
Sabariego, Ruth V. ;
Ferreira da Luz, Mauricio V. ;
Kuo-Peng, Patrick ;
Kraehenbuehl, Laurent .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) :1400-1403
[39]   Numerical modeling of twin tunnels under seismic loading using the Finite Difference Method and Finite Element Method [J].
El Omari, Abdelhay ;
Chourak, Mimoun ;
Cherif, Seif-Eddine ;
Ugena, Carlos Navarro ;
Echebba, El Mehdi ;
Rougui, Mohamed ;
Chaaraoui, Aboubakr .
MATERIALS TODAY-PROCEEDINGS, 2021, 45 :7566-7570
[40]   Predicting the critical outlet width of a hopper using a continuum finite element method model [J].
Pardikar, K. ;
Wassgren, C. .
POWDER TECHNOLOGY, 2019, 356 :649-660