Comparison between the mortar element method and the polynomial interpolation method to model movement in the finite element method

被引:15
作者
Shi, Xiaodong [1 ]
Le Menach, Yvonnick [1 ]
Ducreux, Jean-Pierre [2 ]
Piriou, Francis [1 ]
机构
[1] Univ Sci & Technol Lille 1, L2EP, F-59655 Villeneuve Dascq, France
[2] Elect France, EDF R&D, F-92141 Clamart, France
关键词
electrical machines; finite-element method (FEM); scalar formulation;
D O I
10.1109/TMAG.2007.915840
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Numerous methods are developed to take into account the movement in electrical machines. In this paper, two methods are compared. The first one studies the mortar element method and the second is based on the polynomial interpolation. To solve the Maxwell equation, we used the scalar potential formulation. We will study the numerical behavior of the two methods and apply to a variable reluctance machine.
引用
收藏
页码:1314 / 1317
页数:4
相关论文
共 50 条
[11]   Quantum Computing Method for Solving Electromagnetic Problems Based on the Finite Element Method [J].
Zhang, Jianan ;
Feng, Feng ;
Zhang, Qi-Jun .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (02) :948-965
[12]   Comparison of absorption simulation in semiconductor nanowire and nanocone arrays with the Fourier modal method, the finite element method, and the finite-difference time-domain method [J].
Anttu, Nicklas ;
Mantynen, Henrik ;
Sadi, Toufik ;
Matikainen, Antti ;
Turunen, Jari ;
Lipsanen, Harri .
NANO EXPRESS, 2020, 1 (03)
[13]   THE ATOMIC FINITE ELEMENT METHOD AS A BRIDGE BETWEEN MOLECULAR DYNAMICS AND CONTINUUM MECHANICS [J].
Neugebauer, R. ;
Wertheim, R. ;
Semmler, U. .
JOURNAL OF MULTISCALE MODELLING, 2011, 3 (1-2) :39-47
[14]   SELF-ADAPTIVE STRATEGY FOR ONE-DIMENSIONAL FINITE ELEMENT METHOD BASED ON ELEMENT ENERGY PROJECTION METHOD [J].
袁驷 ;
和雪峰 .
AppliedMathematicsandMechanics(EnglishEdition), 2006, (11) :1461-1474
[15]   Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method [J].
袁驷 ;
杜炎 ;
邢沁妍 ;
叶康生 .
AppliedMathematicsandMechanics(EnglishEdition), 2014, 35 (10) :1223-1232
[16]   Quantum Method for Finite Element Simulation of Electromagnetic Problems [J].
Zhang, Jianan ;
Feng, Feng ;
Zhang, Q. J. .
2021 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2021, :120-123
[17]   Hybrid smoothed finite element method for acoustic problems [J].
Li, Eric ;
He, Z. C. ;
Xu, X. ;
Liu, G. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 :664-688
[18]   Simulation of tool-grinding with finite element method [J].
Weinert, K ;
Schneider, M .
CIRP ANNALS 2000: MANUFACTURING TECHNOLOGY, 2000, :253-256
[19]   On multiwavelet-based finite-element method [J].
Pan, GW ;
Wang, K ;
Gilbert, BK .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (01) :148-155
[20]   Self-adaptive strategy for one-dimensional finite element method based on element energy projection method [J].
Si Yuan ;
Xue-feng He .
Applied Mathematics and Mechanics, 2006, 27 :1461-1474