Multi-scale convolutional neural networks for cloud segmentation

被引:0
|
作者
Aouaidjia, Kamel [1 ]
Boukerch, Issam [1 ]
机构
[1] Space Tech Ctr, Arzew, Oran, Algeria
来源
REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XXV | 2020年 / 11531卷
关键词
Cloud segmentation; Convolutional neural network (ConvNet); Multi-scale features;
D O I
10.1117/12.2573810
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Cloud detection is a fundamental pre-processing task for high resolution satellite images, where the presence or the absence of the cloud plays an important role in making a decision for further processing. Existing techniques are based on per-pixel classification for region segmentation. However, due to the similarity of the features with other patterns like ice or snow, it may lead to misclassification. Moreover, cloud detection imposes the detection of cloud shadow as well since it also covers land areas. In order to come up with an efficient technique to tackle the complexity of pattern diversity, we exploit the recent advances in machine learning by designing and training a deep convolutional neural network model (ConvNet) based on multi-scale feature learning. Our proposed technique claims that different types of features can be learned at different scales to discriminate between image patterns. We chose two publicly available datasets for training. First, the 38-Cloud dataset was annotated as cloudy and non-cloudy classes. Second, the SPARCS (Spatial Procedures for Automated Removal of Cloud and Shadow) dataset with seven classes including cloud, ice/snow, and shadow. Both datasets contain images with four bands (R: Red, G: Green, B: Blue, Nir: Near Infrared), which we use as inputs of the ConvNet model for training and testing. The experimental results show that our proposed method can effectively detect clouds in complex scenes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A multi-scale strategy for deep semantic segmentation with convolutional neural networks
    Zhao, Bonan
    Zhang, Xiaoshan
    Li, Zheng
    Hu, Xianliang
    NEUROCOMPUTING, 2019, 365 : 273 - 284
  • [2] Multi-scale deep context convolutional neural networks for semantic segmentation
    Quan Zhou
    Wenbing Yang
    Guangwei Gao
    Weihua Ou
    Huimin Lu
    Jie Chen
    Longin Jan Latecki
    World Wide Web, 2019, 22 : 555 - 570
  • [3] Segmentation Quality Evaluation based on Multi-Scale Convolutional Neural Networks
    Shi, Wen
    Meng, Fanman
    Wu, Qingbo
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [4] Multi-scale deep context convolutional neural networks for semantic segmentation
    Zhou, Quan
    Yang, Wenbing
    Gao, Guangwei
    Ou, Weihua
    Lu, Huimin
    Chen, Jie
    Latecki, Longin Jan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (02): : 555 - 570
  • [5] MSGCNN: MULTI-SCALE GRAPH CONVOLUTIONAL NEURAL NETWORK FOR POINT CLOUD SEGMENTATION
    Xu, Mingxing
    Dai, Wenrui
    Shen, Yangmei
    Xiong, Hongkai
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 118 - 127
  • [6] Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions
    Duc My Vo
    Sang-Woong Lee
    Multimedia Tools and Applications, 2018, 77 : 18689 - 18707
  • [7] Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions
    Duc My Vo
    Lee, Sang-Woong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (14) : 18689 - 18707
  • [8] MULTI-SCALE CONVOLUTIONAL NEURAL NETWORKS FOR CROWD COUNTING
    Zeng, Lingke
    Xu, Xiangmin
    Cai, Bolun
    Qiu, Suo
    Zhang, Tong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 465 - 469
  • [9] Multi-scale Convolutional Neural Network for SAR Image Semantic Segmentation
    Duan, Yiping
    Tao, Xiaoming
    Han, Chaoyi
    Qin, Xiaowei
    Lu, Jianhua
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [10] Cooperative Multi-Scale Convolutional Neural Networks for Person Detection
    Eisenbach, Markus
    Seichter, Daniel
    Wengefeld, Tim
    Gross, Horst-Michael
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 267 - 276