Optimal dyadic decision trees

被引:26
作者
Blanchard, G.
Schaefer, C.
Rozenholc, Y.
Mueller, K. -R.
机构
[1] Fraunhofer First IDA, D-12489 Berlin, Germany
[2] Univ Paris 05, Appl Math Dept MAP5, F-75270 Paris, France
[3] Tech Univ Berlin, Dept Comp Sci, D-10587 Berlin, Germany
关键词
decision tree; oracle inequality; adaptive convergence rate; classification; density estimation;
D O I
10.1007/s10994-007-0717-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a new algorithm building an optimal dyadic decision tree (ODT). The method combines guaranteed performance in the learning theoretical sense and optimal search from the algorithmic point of view. Furthermore it inherits the explanatory power of tree approaches, while improving performance over classical approaches such as CART/C4.5, as shown on experiments on artificial and benchmark data.
引用
收藏
页码:209 / 241
页数:33
相关论文
共 22 条
[1]  
ADELSONVELSKII GM, 1962, DOKL AKAD NAUK SSSR+, V146, P263
[2]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[3]   APPROXIMATION OF DENSITY-FUNCTIONS BY SEQUENCES OF EXPONENTIAL-FAMILIES [J].
BARRON, AR ;
SHEU, CH .
ANNALS OF STATISTICS, 1991, 19 (03) :1347-1369
[4]   Local Rademacher complexities [J].
Bartlett, PL ;
Bousquet, O ;
Mendelson, S .
ANNALS OF STATISTICS, 2005, 33 (04) :1497-1537
[5]   Different paradigms for choosing sequential reweighting algorithms [J].
Blanchard, G .
NEURAL COMPUTATION, 2004, 16 (04) :811-836
[6]  
BLANCHARD G, 2004, UNPUB STAT PERFORMAN
[7]  
BLANCHARD G, 2004, LECT NOTES ARTIF INT, V3210, P378
[8]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Histograms selection with an Akaike type criterion [J].
Castellan, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08) :729-732