On finite groups isospectral to simple symplectic and orthogonal groups

被引:20
|
作者
Vasil'ev, A. V. [1 ]
Grechkoseeva, M. A. [1 ]
Mazurov, V. D. [1 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
finite group; spectrum of a group; simple group; symplectic group; orthogonal group; composition factor; PRIME GRAPH COMPONENTS; RECOGNITION; SPECTRUM;
D O I
10.1007/s11202-009-0107-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectrum of a finite group is the set of its element orders. Two groups are said to be isospectral if their spectra coincide. We deal with the class of finite groups isospectral to simple and orthogonal groups over a field of an arbitrary positive characteristic p. It is known that a group of this class has a unique nonabelian composition factor. We prove that this factor cannot be isomorphic to an alternating or sporadic group. We also consider the case where this factor is isomorphic to a group of Lie type over a field of the same characteristic p.
引用
收藏
页码:965 / 981
页数:17
相关论文
共 50 条
  • [1] On finite groups isospectral to simple symplectic and orthogonal groups
    A. V. Vasil’ev
    M. A. Grechkoseeva
    V. D. Mazurov
    Siberian Mathematical Journal, 2009, 50 : 965 - 981
  • [2] Finite Groups Isospectral to Simple Groups
    Grechkoseeva, Maria A.
    Mazurov, Victor D.
    Shi, Wujie
    Vasil'ev, Andrey V.
    Yang, Nanying
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (02) : 169 - 194
  • [3] On finite groups isospectral to simple linear and unitary groups
    Vasil'ev, A. V.
    Grechkoseeva, M. A.
    Staroletov, A. M.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (01) : 30 - 40
  • [4] Finite Groups Isospectral to Simple Groups
    Maria A. Grechkoseeva
    Victor D. Mazurov
    Wujie Shi
    Andrey V. Vasil’ev
    Nanying Yang
    Communications in Mathematics and Statistics, 2023, 11 : 169 - 194
  • [5] On the structure of finite groups isospectral to finite simple groups
    Grechkoseeva, Mariya A.
    Vasil'ev, Andrey V.
    JOURNAL OF GROUP THEORY, 2015, 18 (05) : 741 - 759
  • [6] On finite groups isospectral to simple classical groups
    Vasil'ev, A. V.
    JOURNAL OF ALGEBRA, 2015, 423 : 318 - 374
  • [7] On finite groups isospectral to simple linear and unitary groups
    A. V. Vasil’ev
    M. A. Grechkoseeva
    A. M. Staroletov
    Siberian Mathematical Journal, 2011, 52 : 30 - 40
  • [8] ISOSPECTRAL FINITE SIMPLE GROUPS
    Buturlakin, A. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : 111 - 114
  • [9] COMPOSITION FACTORS OF THE FINITE GROUPS ISOSPECTRAL TO SIMPLE CLASSICAL GROUPS
    Staroletov, A. M.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (02) : 341 - 356
  • [10] ON FINITE GROUPS ISOSPECTRAL TO THE SIMPLE GROUPS S-4(q)
    Lytkin, Yuri V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 570 - 584