Generalized convexity: The case of lineally convex Hartogs domains

被引:2
作者
Kiselman, Christer Oscar [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, POB 337, SE-75105 Uppsala, Sweden
关键词
convexity; lineal convexity; generalized convexity; Hartogs domains;
D O I
10.4064/ap180930-3-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by mathematical morphology we study generalized convexity and prove that certain subsets of Hartogs domains are convex in a generalized sense.
引用
收藏
页码:319 / 344
页数:26
相关论文
共 13 条
[1]  
Andersson M., 2004, Complex Convexity and Analytic Functionals
[2]  
[Anonymous], AN ACAD BRASIL CI
[3]  
[Anonymous], 1994, PROGR MATH
[4]   The theory of the functions of several complex variables. Convexity in relation to analytical levels in small and large convexes. [J].
Behnke, H ;
Peschl, E .
MATHEMATISCHE ANNALEN, 1935, 111 :158-177
[5]  
Bourbaki N., 1961, TOPOLOGIE GEN ELEMEN
[6]   Blaschke-type conditions on unbounded domains, generalized convexity, and applications in perturbation theory [J].
Favorov, Sergey ;
Golinskii, Leonid .
REVISTA MATEMATICA IBEROAMERICANA, 2015, 31 (01) :1-32
[7]  
Kiselman C.O., 1996, ACTA MATH VIETNAMICA, V21, P69
[8]  
Kiselman C. O., 2015, BANACH CTR PUBL, V107, P159
[9]   Inverses and quotients of mappings between ordered sets [J].
Kiselman, Christer O. .
IMAGE AND VISION COMPUTING, 2010, 28 (10) :1429-1442
[10]   SUR LA TOPOLOGIE DES ESPACES DE FONCTIONS HOLOMORPHES [J].
MARTINEAU, A .
MATHEMATISCHE ANNALEN, 1966, 163 (01) :62-+