Every effect algebra can be made into a total algebra

被引:22
作者
Chajda, I. [1 ]
Halas, R. [1 ]
Kuhr, J. [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Algebra & Geometry, CZ-77146 Olomouc, Czech Republic
关键词
Effect algebra; commutative directoid; weak basic algebra;
D O I
10.1007/s00012-009-0010-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
circle We prove that every effect algebra (E, +, 0, 1) can easily be made into a total algebra (E, circle plus, inverted left perpendicular, 0) of type (2, 1, 0) in such a way that two elements are compatible in (E, +, 0, 1) if and only if they commute in (E, circle plus, inverted left perpendicular, 0).
引用
收藏
页码:139 / 150
页数:12
相关论文
共 8 条
[1]  
Chajda I., 2007, Semilattice Structures
[2]   Many-valued quantum algebras [J].
Chajda, Ivan ;
Halas, Radomir ;
Kuehr, Jan .
ALGEBRA UNIVERSALIS, 2009, 60 (01) :63-90
[3]  
Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
[4]  
Foulis D.J., 1994, F PHYSICS, V24, P1325
[5]   Weak MV-algebras [J].
Halas, Radomir ;
Plojhar, Lubos .
MATHEMATICA SLOVACA, 2008, 58 (03) :253-262
[6]   DIRECTOIDS - ALGEBRAIC MODELS OF UP-DIRECTED SETS [J].
JEZEK, J ;
QUACKENBUSH, R .
ALGEBRA UNIVERSALIS, 1990, 27 (01) :49-69
[7]  
Kopka F., 1994, Mathematica Slovaca, V44, P21
[8]  
Snasel V., 1997, MATH BOHEM, V122, P267