Differential phase shift quantum secret sharing using a twin field

被引:42
作者
Gu, Jie [1 ,2 ]
Cao, Xiao-Yu [1 ,2 ]
Yin, Hua-Lei [1 ,2 ]
Chen, Zeng-Bing [1 ,2 ]
机构
[1] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum cryptography - Malware;
D O I
10.1364/OE.417856
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum secret sharing (QSS) is essential for multiparty quantum communication, which is one of cornerstones in the future quantum internet. However, a linear rate-distance limitation severely constrains the secure key rate and transmission distance of QSS. Here, we present a practical QSS protocol among three participants based on the differential phase shift scheme and twin field ideas for the solution of high-efficiency multiparty communication task. In contrast to a formerly proposed differential phase shift QSS protocol, our protocol can break the linear rate-distance bound, theoretically improving the secret key rate by three orders of magnitude in a 300-km-long fiber. Furthermore, the new protocol is secure against Trojan horse attacks that cannot be resisted by previous differential phase shift QSS. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:9165 / 9173
页数:9
相关论文
共 40 条
[1]  
Bauml S., 2019, ARXIV191203646
[2]   Experimental demonstration of graph-state quantum secret sharing [J].
Bell, B. A. ;
Markham, D. ;
Herrera-Marti, D. A. ;
Marin, A. ;
Wadsworth, W. J. ;
Rarity, J. G. ;
Tame, M. S. .
NATURE COMMUNICATIONS, 2014, 5
[3]   Experimental quantum secret sharing using telecommunication fiber [J].
Bogdanski, Jan ;
Rafiei, Nima ;
Bourennane, Mohamed .
PHYSICAL REVIEW A, 2008, 78 (06)
[4]   Experimental quantum secret sharing and third-man quantum cryptography [J].
Chen, Y ;
Zhang, AN ;
Zhao, Z ;
Zhou, XQ ;
Lu, CY ;
Peng, CZ ;
Yang, T ;
Pan, JW .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[5]   Simple security proof of twin-field type quantum key distribution protocol [J].
Curty, Marcos ;
Azuma, Koji ;
Lo, Hoi-Kwong .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[6]   Experimental high-dimensional quantum secret sharing with spin-orbit-structured photons [J].
de Oliveira, Michael ;
Nape, Isaac ;
Pinnell, Jonathan ;
TabeBordbar, Najmeh ;
Forbes, Andrew .
PHYSICAL REVIEW A, 2020, 101 (04)
[7]   Implementation of quantum key distribution surpassing the linear rate-transmittance bound [J].
Fang, Xiao-Tian ;
Zeng, Pei ;
Liu, Hui ;
Zou, Mi ;
Wu, Weijie ;
Tang, Yan-Lin ;
Sheng, Ying-Jie ;
Xiang, Yao ;
Zhang, Weijun ;
Li, Hao ;
Wang, Zhen ;
You, Lixing ;
Li, Ming-Jun ;
Chen, Hao ;
Chen, Yu-Ao ;
Zhang, Qiang ;
Peng, Cheng-Zhi ;
Ma, Xiongfeng ;
Chen, Teng-Yun ;
Pan, Jian-Wei .
NATURE PHOTONICS, 2020, 14 (07) :422-+
[8]   Long-Distance Measurement-Device-Independent Multiparty Quantum Communication [J].
Fu, Yao ;
Yin, Hua-Lei ;
Chen, Teng-Yun ;
Chen, Zeng-Bing .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[9]   Experimental demonstration of four-party quantum secret sharing [J].
Gaertner, S. ;
Kurtsiefer, C. ;
Bourennane, M. ;
Weinfurter, H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (02)
[10]   Trojan-horse attacks on quantum-key-distribution systems [J].
Gisin, N ;
Fasel, S ;
Kraus, B ;
Zbinden, H ;
Ribordy, G .
PHYSICAL REVIEW A, 2006, 73 (02)