LAGRANGIANS FOR EQUATIONS OF PAINLEVE TYPE BY MEANS OF THE JACOBI LAST MULTIPLIER

被引:11
作者
D'Ambrosi, G. [1 ]
Nucci, M. C. [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
Ordinary differential equations; equations of Painleve type; Lagrangians; Jacobi Last Multiplier; LIE SYMMETRIES;
D O I
10.1142/S1402925109000327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the method of Jacobi Last Multiplier to the fifty second-order ordinary differential equations of Painleve type as given in Ince in order to obtain a Lagrangian and consequently solve the inverse problem of Calculus of Variations for those equations. The easiness and straightforwardness of Jacobi's method is underlined.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 18 条
[11]  
LIE S, 1874, FORDHANDLINGER VIDEN, P255
[12]  
LIE S, 1912, VORLESUNGEN DIFFEREN
[13]  
Malmquist J., 1922, Ark. Mat. Astr. Fys., V17, P1
[14]   Lie symmetries of a Painleve-type equation without Lie symmetries [J].
Nucci, M. C. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (02) :205-211
[15]   Jacobi last multiplier and Lie symmetries: A novel application of an old relationship [J].
Nucci, MC .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (02) :284-304
[16]  
NUCCI MC, 2008, ARXIV08090022V1MATHP
[17]   ON THE TAY-FUNCTION OF THE PAINLEVE EQUATIONS [J].
OKAMOTO, K .
PHYSICA D, 1981, 2 (03) :525-535
[18]  
Whittaker E.T., 1988, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies