A remark on the maximum principle and stochastic completeness

被引:93
作者
Pigola, S
Rigoli, M
Setti, AG
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Insubria, Dipartimento Sci CFM, I-22100 Como, Italy
关键词
maximum principle; stochastic completeness;
D O I
10.1090/S0002-9939-02-06672-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the stochastic completeness of a Riemannian manifold (M, [,]) is equivalent to the validity of a weak form of the Omori-Yau maximum principle. Some geometric applications of this result are also presented.
引用
收藏
页码:1283 / 1288
页数:6
相关论文
共 26 条
[21]   SCALAR CURVATURE AND CONFORMAL DEFORMATION OF HYPERBOLIC SPACE [J].
RATTO, A ;
RIGOLI, M ;
VERON, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 121 (01) :15-77
[22]   THE AHLFORS-SCHWARZ LEMMA IN SEVERAL COMPLEX-VARIABLES [J].
ROYDEN, HL .
COMMENTARII MATHEMATICI HELVETICI, 1980, 55 (04) :547-558
[23]   A volume estimate for strong subharmonicity and maximum principle on complete Riemannian manifolds [J].
Takegoshi, K .
NAGOYA MATHEMATICAL JOURNAL, 1998, 151 :25-36
[24]   GENERAL SCHWARZ LEMMA FOR KAHLER MANIFOLDS [J].
YAU, ST .
AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (01) :197-203
[25]   HARMONIC-FUNCTIONS ON COMPLETE RIEMANNIAN MANIFOLDS [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (02) :201-228
[26]  
YAU ST, 1978, J MATH PURE APPL, V57, P191