A remark on the maximum principle and stochastic completeness

被引:93
作者
Pigola, S
Rigoli, M
Setti, AG
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Insubria, Dipartimento Sci CFM, I-22100 Como, Italy
关键词
maximum principle; stochastic completeness;
D O I
10.1090/S0002-9939-02-06672-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the stochastic completeness of a Riemannian manifold (M, [,]) is equivalent to the validity of a weak form of the Omori-Yau maximum principle. Some geometric applications of this result are also presented.
引用
收藏
页码:1283 / 1288
页数:6
相关论文
共 26 条
[1]  
AZENCOTT R, 1974, B SOC MATH FR, V102, P193
[2]   A GENERALIZED MAXIMUM PRINCIPLE AND ITS APPLICATIONS IN GEOMETRY [J].
CHEN, Q ;
XIN, YL .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (02) :355-366
[3]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[4]   Notes on Nadirashvili's proof of the Hadamard and Calibi-Yau conjectures [J].
Collin, P ;
Rosenberg, H .
BULLETIN DES SCIENCES MATHEMATIQUES, 1999, 123 (07) :563-575
[5]  
Eells J, 1983, Selected Topics in Harmonic Maps, V50
[6]  
EELLS J, 1965, P US JAP SEM DIFF GE, P167
[7]   SOME RIGIDITY THEOREMS FOR MINIMAL SUB-MANIFOLDS OF THE SPHERE [J].
FISCHERCOLBRIE, D .
ACTA MATHEMATICA, 1980, 145 (1-2) :29-46
[9]  
GREENE R, 1979, LECT NOTES MATH, V699
[10]   Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds [J].
Grigor'yan, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (02) :135-249