Intermittent many-body dynamics at equilibrium

被引:55
作者
Danieli, C. [1 ,2 ]
Campbell, D. K. [3 ]
Flach, S. [1 ,2 ]
机构
[1] Massey Univ, Ctr Theoret Chem & Phys, New Zealand Inst Adv Study, Auckland 0745, New Zealand
[2] Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon 34051, South Korea
[3] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA
关键词
PASTA-ULAM PROBLEM; DISCRETE BREATHERS; HAMILTONIAN-SYSTEMS; FERMI; CHAOS;
D O I
10.1103/PhysRevE.95.060202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q-breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
引用
收藏
页数:5
相关论文
共 37 条
  • [1] Hypothesis of strong chaos and anomalous diffusion in coupled symplectic maps
    Altmann, E. G.
    Kantz, H.
    [J]. EPL, 2007, 78 (01)
  • [2] Time-Scales to Equipartition in the Fermi-Pasta-Ulam Problem: Finite-Size Effects and Thermodynamic Limit
    Benettin, G.
    Ponno, A.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) : 793 - 812
  • [3] Localizing energy through nonlinearity and discreteness
    Campbell, DK
    Flach, S
    Kivshar, YS
    [J]. PHYSICS TODAY, 2004, 57 (01) : 43 - 49
  • [4] The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems
    Casetti, L
    CerrutiSola, M
    Pettini, M
    Cohen, EGD
    [J]. PHYSICAL REVIEW E, 1997, 55 (06): : 6566 - 6574
  • [5] CHIRIKOV BV, 1984, P 9 INT C NONL OSC K, V2, P421
  • [6] Energy localization on q-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences
    Christodoulidi, H.
    Efthymiopoulos, C.
    Bountis, T.
    [J]. PHYSICAL REVIEW E, 2010, 81 (01):
  • [7] Finite times to equipartition in the thermodynamic limit
    De Luca, J
    Lichtenberg, AJ
    Ruffo, S
    [J]. PHYSICAL REVIEW E, 1999, 60 (04): : 3781 - 3786
  • [8] ALGEBRAIC ESCAPE IN HIGHER DIMENSIONAL HAMILTONIAN-SYSTEMS
    DING, MZ
    BOUNTIS, T
    OTT, E
    [J]. PHYSICS LETTERS A, 1990, 151 (08) : 395 - 400
  • [9] Interaction of discrete breathers with thermal fluctuations
    Eleftheriou, M.
    Flach, S.
    [J]. LOW TEMPERATURE PHYSICS, 2008, 34 (07) : 554 - 558
  • [10] SELF-CONSISTENT CHECK OF THE VALIDITY OF GIBBS CALCULUS USING DYNAMICAL VARIABLES
    ESCANDE, D
    KANTZ, H
    LIVI, R
    RUFFO, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (1-2) : 605 - 626