Hardness and approximation of traffic grooming

被引:26
|
作者
Amini, Omid [4 ]
Perennes, Stephane [1 ,2 ]
Sau, Ignasi [1 ,2 ,3 ]
机构
[1] UNSA, CNRS, Mascotte Joint Project 13S, Paris, France
[2] INRIA Sophia Antipolis, Sophia Antipolis, France
[3] UPC, Appl Math Dept 4, Graph Theory & Combinator Grp, Barcelona, Spain
[4] Max Planck Inst Informat, Saarbrucken, Germany
关键词
Traffic grooming; Optical networks; SONET ADM; Approximation algorithms; Apx-hardness; PTAS; DENSE K-SUBGRAPH; COMPLEXITY; TRIANGLES; NETWORKS; BOUNDS;
D O I
10.1016/j.tcs.2009.04.028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Traffic grooming is a central problem in optical networks. It refers to packing low rate signals into higher speed streams, in order to improve bandwidth utilization and reduce network cost. In WDM networks, the most accepted criterion is to minimize the number of electronic terminations, namely the number of SONET Add-Drop Multiplexers (ADMs). In this article we focus on ring and path topologies. On the one hand, we provide an inapproximability result for TRAFFIC GROOMING for fixed values of the grooming factor g, answering affirmatively the conjecture of Chow and Lin [T. Chow, P. Lin,The ring grooming problem, Networks 44 (2004), 194-202]. More precisely, we prove that RING TRAFFIC GROOMING for fixed g >= 1 and PATH TRAFFIC GROOMING for fixed g >= 2 are APX-complete. That is, they do not accept a PTAS unless P = NP. Both results rely on the fact that finding the maximum number of edge-disjoint triangles in a tripartite graph (and more generally cycles of length 2g + 1 in a (2g + 1)-partite graph of girth 2g + 1) is APX-complete. On the other hand, we provide a polynomial-time approximation algorithm for RING and PATH TRAFFIC GROOMING. based on a greedy cover algorithm, with an approximation ratio independent of g. Namely, the approximation guarantee is O(n(1/3) log(2) n) for any g >= 1, n being the size of the network. This is useful in practical applications, since in backbone networks the grooming factor is usually greater than the network size. Finally, we improve this approximation ratio under some extra assumptions about the request graph. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3751 / 3760
页数:10
相关论文
共 50 条
  • [41] Configuring traffic grooming VPλNs
    Cinkler, T
    PHOTONIC NETWORK COMMUNICATIONS, 2004, 7 (03) : 239 - 253
  • [42] On Hierarchical Traffic Grooming in WDM Networks
    Chen, Bensong
    Rouskas, George N.
    Dutta, Rudra
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2008, 16 (05) : 1226 - 1238
  • [43] Multicast traffic grooming in WDM networks
    Kamal, AE
    Ul-Mustafa, R
    OPTICOMM 2003: OPTICAL NETWORKING AND COMMUNICATIONS, 2003, 5285 : 25 - 36
  • [44] Configuring Traffic Grooming VPλNs
    Tibor Cinkler
    Photonic Network Communications, 2004, 7 : 239 - 253
  • [45] Priority enabled dynamic traffic grooming
    Chen, B
    Bose, SK
    Zhong, WD
    IEEE COMMUNICATIONS LETTERS, 2005, 9 (04) : 366 - 368
  • [46] On the Complexity of the Regenerator Cost Problem in General Networks with Traffic Grooming
    Michele Flammini
    Gianpiero Monaco
    Luca Moscardelli
    Mordechai Shalom
    Shmuel Zaks
    Algorithmica, 2014, 68 : 671 - 691
  • [47] Traffic-grooming in WDM network under physical constraints
    Zeng, Ling
    Xu, Shizhong
    Wang, Sheng
    Wang, Xiong
    Li, Lemin
    Zhou, Kaiyu
    2009 WRI INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND MOBILE COMPUTING: CMC 2009, VOL 2, 2009, : 555 - +
  • [48] On the Complexity of the Regenerator Cost Problem in General Networks with Traffic Grooming
    Flammini, Michele
    Monaco, Gianpiero
    Moscardelli, Luca
    Shalom, Mordechai
    Zaks, Shmuel
    PRINCIPLES OF DISTRIBUTED SYSTEMS, 2011, 7109 : 96 - +
  • [49] Traffic grooming in light trail networks
    Ye, YB
    Woesner, H
    Grasso, R
    Chen, T
    Chlamtac, I
    GLOBECOM '05: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6: DISCOVERY PAST AND FUTURE, 2005, : 1957 - 1962
  • [50] Traffic grooming in WDM optical network with grooming resources at Max Connectivity nodes
    Paul, Partha
    Rawat, Balbeer Singh
    Ghorai, S. K.
    OPTICAL FIBER TECHNOLOGY, 2012, 18 (06) : 490 - 497