Convergence rate of Krasulina estimator

被引:0
|
作者
Chen, Jiangning [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30313 USA
关键词
PCA; Incremental; Online updating; Covariance matrix; Rate of convergence; Adaptive estimation; SPECTRAL PROJECTORS; PCA; APPROXIMATION;
D O I
10.1016/j.spl.2019.108562
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Principal component analysis (PCA) is one of the most commonly used statistical procedures with a wide range of applications. Consider the points X-1, X-2 , ..., X-n are vectors drawn i.i.d. from a distribution with mean zero and covariance Sigma, where Sigma is unknown. Let A(n) = XnXnT, then E[A(n)] = Sigma. This paper considers the problem of finding the smallest eigenvalue and eigenvector of matrix Sigma. A classical estimator of this type is due to (Krasulina, 1969). We are going to state the convergence proof of Krasulina for the smallest eigenvalue and corresponding eigenvector, and then find their convergence rate. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] On rate of convergence in non-central limit theorems
    Anh, Vo
    Leonenko, Nikolai
    Olenko, Andriy
    Vaskovych, Volodymyr
    BERNOULLI, 2019, 25 (4A) : 2920 - 2948
  • [22] On the Rate of Convergence of Fictitious Play
    Brandt, Felix
    Fischer, Felix
    Harrenstein, Paul
    THEORY OF COMPUTING SYSTEMS, 2013, 53 (01) : 41 - 52
  • [23] ON THE RATE OF CONVERGENCE OF PERCEPTRON LEARNING
    BHATTACHARYA, U
    PARUI, SK
    PATTERN RECOGNITION LETTERS, 1995, 16 (05) : 491 - 497
  • [24] On the rate of convergence of iterated exponentials
    Gao, Fuchang
    Han, Lixing
    Schilling, Kenneth
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2012, 39 (1-2) : 89 - 96
  • [25] On the Rate of Convergence of Fictitious Play
    Felix Brandt
    Felix Fischer
    Paul Harrenstein
    Theory of Computing Systems, 2013, 53 : 41 - 52
  • [26] ON THE RATE OF CONVERGENCE OF HALPERN ITERATIONS
    Colao, Vittorio
    Marino, Giuseppe
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (12) : 2639 - 2646
  • [27] Rate of Convergence of the FOCUSS Algorithm
    Xie, Kan
    He, Zhaoshui
    Cichocki, Andrzej
    Fang, Xiaozhao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (06) : 1276 - 1289
  • [28] On the rate of convergence of iterated exponentials
    Fuchang Gao
    Lixing Han
    Kenneth Schilling
    Journal of Applied Mathematics and Computing, 2012, 39 (1-2) : 89 - 96
  • [29] On the Rate of Convergence of STSD Extremes
    Lin, Fuming
    Zhang, Xinhua
    Peng, Zuoxiang
    Jiang, Yingying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (10) : 1795 - 1806
  • [30] On the rate of convergence of the ECME algorithm
    Mkhadri, A
    STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) : 81 - 87