Number of bins and maximum lateness minimization in two-dimensional bin packing

被引:9
作者
Arbib, Claudio [1 ,2 ]
Marinelli, Fabrizio [3 ]
Pizzuti, Andrea [3 ]
机构
[1] Univ Aquila, Dipartimento Ingn Sci Informaz & Matemat, Via Vetoio, I-67010 Laquila, Italy
[2] Univ Aquila, Ctr Excellence DEWS, Via Vetoio, I-67010 Laquila, Italy
[3] Univ Politecn Marche, Dipartimento Ingn Informaz, Via Brecce Blanche, I-60131 Ancona, Italy
关键词
Packing; Scheduling; Heuristics; Multi-objective problems; PERFORMANCE; HEURISTICS; STOCK;
D O I
10.1016/j.ejor.2020.09.023
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work we address an orthogonal non-oriented two-dimensional bin packing problem where items are associated with due-dates. Two objectives are considered: minimize (i) the number of bins and (ii) the maximum lateness of the items. We discuss basic properties of non-dominated solutions and propose a sequential value correction heuristic that outperforms two benchmark algorithms specifically designed for this problem. We also extend the benchmark dataset for this problem with new and larger industrial instances obtained from a major manufacturer of cutting machines. Finally, we give some insights into the structure of Pareto-optimal sets in the classes of instances here considered. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 113
页数:13
相关论文
共 27 条
[1]  
Alves C., 2016, DUAL FEASIBLE FUNCTI
[2]  
Arbib C., 2016, INT J MANAGEMENT SCI
[3]   On cutting stock with due dates [J].
Arbib, Claudio ;
Marinelli, Fabrizio .
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2014, 46 :11-20
[4]   One-dimensional heuristics adapted for two-dimensional rectangular strip packing [J].
Belov, G. ;
Scheithauer, G. ;
Mukhacheva, E. A. .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2008, 59 (06) :823-832
[5]   Setup and open-stacks minimization in one-dimensional stock cutting [J].
Belov, Gleb ;
Scheithauer, Guntram .
INFORMS JOURNAL ON COMPUTING, 2007, 19 (01) :27-35
[6]   A genetic algorithm for two-dimensional bin packing with due dates [J].
Bennell, Julia A. ;
Lee, Lai Soon ;
Potts, Chris N. .
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2013, 145 (02) :547-560
[7]   TWO-DIMENSIONAL FINITE BIN-PACKING ALGORITHMS [J].
BERKEY, JO ;
WANG, PY .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1987, 38 (05) :423-429
[8]   A new lower bound for the non-oriented two-dimensional bin-packing problem [J].
Clautiaux, Francois ;
Jouglet, Antoine ;
El Hayek, Joseph .
OPERATIONS RESEARCH LETTERS, 2007, 35 (03) :365-373
[9]   Efficient lower bounds and heuristics for the variable cost and size bin packing problem [J].
Crainic, Teodor Gabriel ;
Perboli, Guido ;
Rei, Walter ;
Tadei, Roberto .
COMPUTERS & OPERATIONS RESEARCH, 2011, 38 (11) :1474-1482
[10]   Sequential heuristic for the two-dimensional bin-packing problem [J].
Cui, Yi-Ping ;
Cui, Yaodong ;
Tang, Tianbing .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 240 (01) :43-53